[1]
Zhangsheng C., Xuewen G. and Lei Y. A Uniform formula of neutron multiplication calculation from sub-criticality to prompt-criticality with step change of reactivity. Nuclear Power Engineering, Vol. 27 (2006), p.14 (in Chinese).
Google Scholar
[2]
Aboanber A. E. and Hamada Y. M. Power series solution (PWS) of nuclear reactor dynamics with Newtonian temperature feedback. Ann. Nucl. Energy, Vol. 30 (2003): p.1111.
DOI: 10.1016/s0306-4549(03)00033-1
Google Scholar
[3]
Aboanber A. E. On Padé Approximations to the exponential function and application to the point kinetics equations. Progress in Nuclear Energy, Vol. 44 (2004), p.347.
DOI: 10.1016/j.pnucene.2004.07.003
Google Scholar
[4]
Porsching T. A. Numerical solution of the reactor kinetics equations by approximate exponentials. Nucl. Sci. Eng., Vol. 25 (1966), p.183.
DOI: 10.13182/nse66-a17735
Google Scholar
[5]
Vigil J. C. Solution of the reactor kinetics equations by analytic continuation. Nucl. Sci. Eng., Vol. 29 (1967), p.392.
Google Scholar
[6]
Gupta H. P. and Trasi M. S. Asymptotically stable solutions of point-reactor kinetics equations in the presence of Newtonian temperature feedback. Ann. Nucl. Energy, Vol. 13 (1986), p.203.
DOI: 10.1016/0306-4549(86)90027-7
Google Scholar
[7]
Aboanber A. E. and Hamada Y. M. Power series solution (PWS) of nuclear reactor dynamics with Newtonian temperature feedback. Ann. Nucl. Energy, Vol. 30 (2003), p.1111.
DOI: 10.1016/s0306-4549(03)00033-1
Google Scholar
[8]
Li H., Chen W., Luo L., et al., A new integral method for solving the point reactor neutron kinetics equations, Annals of Nuclear Energy, Vol. 36 (2009), p.427.
DOI: 10.1016/j.anucene.2008.11.033
Google Scholar
[9]
Chen W. Z., Zhu B. and Li H. F. The analytic solutions of point reactor neutron-kinetics equation with small step reactivity. Acta Physica Sinica, Vol. 50 (2004), p.2486 (in Chinese).
DOI: 10.7498/aps.53.2486
Google Scholar
[10]
Chen W. Z., Kuang B. and Guo L. F. et al. New analysis of prompt supercritical process with temperature feedback. Nuclear Engineering and Design, Vol. 236 (2006), p.1326.
DOI: 10.1016/j.nucengdes.2005.11.004
Google Scholar
[11]
Haofeng L., Wenzhen C. and Fan Z. Approximate solutions of point kinetics equations with one delayed neutron group and temperature feedback during delayed supercritical process. Annals of Nuclear Energy, Vol. 34 (2007), p.521.
DOI: 10.1016/j.anucene.2007.02.014
Google Scholar
[12]
Changyou C. A Numerical method of solving the point reactor neutron kinetics equations. Chinese Journal of Nuclear Science and Engineering, Vol. 25 (2005), p.20.
Google Scholar