Enhanced Geothermal Systems Projects and its Potential for Carbon Storage

Article Preview

Abstract:

Enhanced Geothermal Systems represent a series of technology, which use engineering methods to improve the performance of geothermal power plant. In some geothermal fields, the rocks are in high temperature but a low permeability, or the subsurface water is scarce. In these geological conditions, cool water was injected into the geothermal wells to fracture the tight rock and create man-made reservoir for thermal exploitation. Furthermore, these engineering methods can be utilized to improve the productivity of pre-existing hydrothermal power plants. To save water and treat the global warming, using carbon dioxide instead of water as working fluid was proposed. Numerical simulation reveals that the carbon dioxide has numerous advantages over water as working fluid in the heat mining process. The precipitation caused by carbon dioxide will restore part of carbon dioxide in the rock and reduce the micro-seismicity risk.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 732-733)

Pages:

109-115

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Al-Mudhaf, T.H. Goodwin: Applied Economics, Vol. 25(1993) No.2, pp.181-190.

Google Scholar

[2] I.B. Fridleifsson: Geothermics, Vol. 32(2003) No.4, pp.379-388.

Google Scholar

[3] H.R. Wilson, J. Ahn, R.J. Akers, et al: Nuclear Fusion, Vol. 44(2004) No.8, p.917.

Google Scholar

[4] J. Majorowicz, S.E. Grasby: Journal of Geophysics and Engineering, Vol. 7(2010) No.3, pp.232-241.

Google Scholar

[5] J.W. Tester, B. Anderson, A. Batchelor, et al: Massachusetts Institute of Technology, Doe Contract De-Ac07-05Id14517 Final Report, (2006).

Google Scholar

[6] K. Pruess, M. Azaroual: Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering, (2006).

Google Scholar

[7] A.U.K.K. Hideshi Kaieda: Proceedings, Twenty-Fourth Workshop On Geothermal Reservoir Engineering, (2009).

Google Scholar

[8] V.M. Yarushina, D. Bercovici: Geophysical Research Letters, (2013).

Google Scholar

[9] D. Duchane, D. Brown: Ghc Bulletin December, (2002) pp.13-19.

Google Scholar

[10] R. DiPippo: Geothermal power plants: principles, applications, case studies and environmental impact,(Butterworth-Heinemann, 2012).

Google Scholar

[11] H.G. Richards, R.H. Parker, A. Green, et al: Geothermics, Vol. 23(1994) No.2, pp.73-109.

Google Scholar

[12] A. Gérard, A. Genter, T. Kohl, et al: Geothermics, Vol. 35(2006) No.5-6, pp.473-483.

Google Scholar

[13] S. Portier, F. Vuataz, P. Nami, et al: Geothermics, Vol. 38(2009) No.4, pp.349-359.

Google Scholar

[14] R.L. Hébert, B. Ledésert, D. Bartier, et al: Journal of Volcanology and Geothermal Research, Vol. 196(2010) No.1-2, pp.126-133.

Google Scholar

[15] Information on http://geothermal.inel.gov.

Google Scholar

[16] M. Kuriyagawa, N. Tenma: Geothermics, Vol. 28(1999) No.4, pp.627-636.

Google Scholar

[17] P. Kruger, H. Karasawa, N. Tenma, et al: (2000).

Google Scholar

[18] N. Tenma, T. Yamaguchi, G. Zyvoloski: Geothermics, Vol. 37(2008) No.1, pp.19-52.

Google Scholar

[19] Z. Keyan, P. Xiaoping: Sino-Global Energy, Vol. 2(2009) p.11.

Google Scholar

[20] Z. Feng, Y. Zhao, A. Zhou, et al: Renewable Energy, Vol. 39(2012) No.1, pp.490-495.

Google Scholar

[21] E.L. Majer, R. Baria, M. Stark, et al: Geothermics, Vol. 36(2007) No.3, pp.185-222.

Google Scholar

[22] N. Deichmann, D. Giardini: Seismological Research Letters, Vol. 80(2009) No.5, pp.784-798.

Google Scholar

[23] M.E. Harmon, W.K. Ferrell, J.F. Franklin: Science, Vol. 247(1990) No.4943, pp.699-702.

Google Scholar