Synthesis and Photocatalytic Activity of Ag-Doped BiVO4

Article Preview

Abstract:

Ag-doped BiVO4 semiconductor photocatalysts were synthesized via the one-step hydrothermal method. The microstructure and morphology of catalysts were characterized by using X-ray diffraction, Scanning electron microscopy, and Energy dispersive X-ray detector (EDS) and photocatalytic activities of BiVO4 catalysts with and without Ag doping were evaluated by degrading methylene blue (MB) under visible-light irradiation. UV-Vis absorption spectra were measured to evaulate the photocatalytic activity of the as-synthesized catalysts. The results suggested that Ag-doped BiVO4 with larger rod-like particle size but better crystallnity has the stronger UV absorption. In comparison with pure BiVO4, degradation rate of MB was increased about 18% in Ag-doped BiVO4 with the Ag+ dopant concentration of 15 mol%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

2204-2209

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] JG. Yu, XJ. Zhao, QG. Zhao: Journal of Materials Science Letters, Vol. 19 (2000), pp.1015-1017

Google Scholar

[2] YF. Shen, TY. Xiong, H. Du, et al.: J. Sol-Gel Sci. Technol., Vol. 50 (2009), pp.98-102

Google Scholar

[3] YY. Liang, HL Wang, Hernan Sanchez Casalongue, et al.: Nano Res., Vol. 10 (2010), pp.701-705

Google Scholar

[4] A. Hattori, Y. Tokihisa, H. Tada, et al.: Journal of Sol-Gel Science and Technology, Vol. 22 (2001), pp.53-61

Google Scholar

[5] A. Fujishima, K. Honda: Nature, Vol. 238 (1972), pp.37-38

Google Scholar

[6] JH. Carey, J. Lawrence, HM. Tosine: Bull Environ Contam Toxicol, Vol. 6 (1976), pp.697-701

Google Scholar

[7] SN. Frank, AJ. Bard: J. Am. Chem. Soc., Vol. 1 (1977), pp.303-304

Google Scholar

[8] JG. Yu, XJ. Zhao: Journal of Wuhan university of Technology, Vol. 22 (2000), pp.12-15, in Chinese.

Google Scholar

[9] JW. Tang, ZG. Zou, JH. Ye: J. Phys. Chem. C, Vol. 11 (2007), pp.12779-12785

Google Scholar

[10] K. Yu, SG. Yang, H. He, et al.: J. Phys. Chem. Vol. 113 (2009), pp.10024-10032

Google Scholar

[11] XC. Song, YF. Zheng, R. Ma, et al.: J. Hazard Mater, Vol. 192 (2011), pp.186-191

Google Scholar

[12] Ran Chen, Chaohao Hu, Shuai Wei, et al.: Elsevier Ltd. (2012)

Google Scholar

[13] JH. Xu, WZ. Wang, EP. Gao, et al.: Catalysis Communications, Vol. 12 (2011), pp.834-838

Google Scholar

[14] A. Kudo, K. Omori and H. Kato: J. Am. Chem. Soc., Vol. 121 (1999), pp.11459-11467

Google Scholar

[15] L. Hu, ZX. Ye, H. Yang, et al.: Envirmental Protection of Chemical Industry, Vol. 3 (2011), pp.274-276

Google Scholar

[16] J. Suo, LF. Liu and FL. Yang: Chinese Journal of Catalysis, Vol. 4 (2009), pp.323-327, in Chinese.

Google Scholar

[17] H. Xu, HM. Li, CD. Wu, et al.: Journal of Hazardous Materials, Vol. 153 (2008), pp.877-884

Google Scholar

[18] B. Zhou, X. Zhao, HJ. Liu, et al.: Separation and Purification Technology, Vol. 77 (2011), pp.275-282

Google Scholar

[19] CX. Xu, X. Wei, ZH. Ren, et al.: Mater. Lett., Vol. 63 (2009), pp.2194-2197

Google Scholar

[20] ZF. Zhu, J. Du, JQ. Li, et al.: Ceramics International, Vol. 38 (2012), pp.4827-4834

Google Scholar