Analysis of Variable Section Piezoelectric Harvester

Article Preview

Abstract:

This paper first presents an analytical model for investigating the vibration performance of a thin curved laminated piezoelectric beam with variable curvatures and transverse sections. This kind of beam is widely used for the MEMS piezoelectric vibration energy harvester. The curved thin beam theory with bisymmetric section, here rectangular section used, is employed to explore the bending and twisting coupling vibration characteristics. In order to study the vibration properties with concentrated load, the effects of the tip proof mass isnt used. The paper also shows that the adoption of ANSYS software to carry out the MEMS piezoelectric vibration energy harvesters numerical simulation can improve the efficiency of the harvester designing and manufacturing consumedly. The results showed that the maximum voltage at the resonant point was increasing while the initial curvature radius increasing. On the other hand, the voltage difference of the inner edge and the outer edge was very small because the matrix layer was PDMS with very small stiffness and density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

2638-2641

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. L. Gonzàlez, A. Rubio, F. Moll. Int. J. Soc. Mater. Eng. Resourse Vol. 10(2002).

Google Scholar

[2] C. O Mathúna, T. O. Donnell, R.V. Martinez-Catala, J. Rohan, B. O'Flynn. Talanta, 75, 513(2008).

Google Scholar

[3] K. A. Cook-Chennault, N. Thambi, A. M. Sastry. Smart Mater. Structure Vol. 17(2008)

Google Scholar

[4] A. S. Henry, J. I. Daniel, P. A. Gyuhae. Shock Vib. Digest Vol. 36(2004).

Google Scholar

[5] G. A. Lesieutre, G. K. Ottman, H. F. Hofmamn. J Sound Vibration Vol. 269(2004).

Google Scholar

[6] S. Anton and H. Sodano, A review of a power harvesting using piezoelectric materials (2003–2006)," Smart Mater. Structure Vol. 16(2007)

DOI: 10.1088/0964-1726/16/3/r01

Google Scholar

[7] J. M. Renno, M. F. Daqaq, D. J. Inman. J. Sound Vibration Vol. 320(2009).

Google Scholar

[8] A. S. Henry, J. I. Daniel, P. A. Gyuhae. Shock Vib Digest Vol. 36(2004).

Google Scholar

[9] A. M. Wickenheiser, E. Garcis. Smart Mater. Structure Vol. 19(2010).

Google Scholar

[10] V. R. Challa, M.G. Prasad, F. Fisher. Smart Mater. Structure Vol. 18(2009).

Google Scholar

[11] Y. Zhou, Y. Dong, B. Y. Zhou. Advanced Mater. Research Vol. 139-141((2011).

Google Scholar

[12] T. A. Anderson, D. W. Sexton. Sens. Smart Structure Vol. 6174(2006).

Google Scholar

[13] R. T. Wang, J. C. Tsu. J. Chi. Ins. Engineer Vol. 407-417(2001)

Google Scholar

[14] M. Alex, S. M. Kee, J. G. Yi. IEEE Sens. Journal Vol. 9(2009 )

Google Scholar