Oxidation of Huolinguole Lignite with NaOCl

Article Preview

Abstract:

Huolinguole lignite (HL) was oxidized with aqueous NaOCl solution under mild conditions. The oxidation products were analyzed by GC/MS. In total 111 products from the HL oxidation were detected, most of which were benzene polycarboxylic acids and short-chain alkanoic acids, while a predominant chlorinated compounds such as trichloromethane, dichloroacetic acid, trichloroacetic acid were also identified. These results indicate that oxidation of coals with aqueous NaOCl solution may be a promising method for high value-added utilization of coals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

584-587

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Nakagawa, A. Namba, M. Böhlmann and K. Miura: Fuel vol. 83(2004), pp.719-725.

Google Scholar

[2] OE. Mašek, S. Hosokai, K. Norinaga, C. Z. Li and J.I. Hayashi: Energy Fuels vol. 23 (2009), pp.4496-4501.

Google Scholar

[3] H. Katalambula and R.Gupta: Energy Fuels vol. 23 (2009), pp.3392-3405.

Google Scholar

[4] C. Zeng, S. Clayton, H. Wu, J. Hayashi and C. Z. Li: Energy Fuels vol. 21 (2007) , pp.399-404.

Google Scholar

[5] K. Miura, K. Mae, H. Okutsu and N. Mizutani: Energy Fuels vol. 10 (1996), pp.1196-1201.

Google Scholar

[6] K. Mae, H. Shindo and K. Miura: Energy Fuels vol. 15 (2001), pp.611-617.

Google Scholar

[7] Z. X. Liu, Z. C. Liu, Z. M. Zong, X. Y. Wei, J. Wang and C. W. Lee: Energy Fuels vol. 17 (2003), pp.424-426.

Google Scholar

[8] S. R. Palmer, E. J. Hippo and X. A. Dorai: Fuel vol. 73 (1994), pp.161-169.

Google Scholar

[9] E. H. Cho and Q. Luo: Fuel Process. Technol. vol. 46 (1996), pp.25-39.

Google Scholar

[10] Y. G. Huang, Z. M . Zong, Z. S. Yao, Y. X. Zheng, J. Mou, G. F. Liu, J. P. Cao, M. J. Ding, K. Y. Cai, F. Wang, W. Zhao, Z. L. Xia and X. Y. Wei: Energy Fuels vol. 22 (2008), pp.1799-1806.

DOI: 10.1021/ef700589q

Google Scholar

[11] S. Murata, Y. Tani, M. Hiro, K. Kidena, L. Artok, M. Nomura and M. Miyake: Fuel vol. 80 (2001), pp.2099-2109.

DOI: 10.1016/s0016-2361(01)00093-x

Google Scholar

[12] Z. S. Yao, X. Y. Wei, J. Lv, F. J. Liu, Y. G. Huang, J. J. Xu, F. J. Chen, Y. Huang, Y. Li, Y. Lu and Z. M. Zong: Energy Fuels vol. 24 (2010), P.1801-1808.

DOI: 10.1021/ef9012505

Google Scholar

[13] G. Z. Gong, X. Y. Wei and Z. M. Zong: J Fuel Chem Technol vol. 40 (2012), P. 1-7.

Google Scholar

[14] E. W. B. De Leer, J. S. Sinnlnghe Damste, C. Erkelens and L. de Galan: Environ. Sci. Technol. vol. 19 (1985), pp.512-522.

DOI: 10.1021/es00136a006

Google Scholar

[15] L. Kronberg, R. F. Christman, R. Singh and L. M. Ball: Environ. Sci. Technol. vol. 25 (1991), pp.99-104.

Google Scholar