Micro Machining Issues: Design and Machining Process

Article Preview

Abstract:

Numerical controlled high speed micromachining on desktop machines is known to induce inherently new types of errors and machining issues at micro scale. The sources of these errors are either not known, or difficult to be modeled. Some of these errors are due to the downscaling effect of machine elements to a small micro-machine. This paper attempts to explore key issues proper to micro machines that are different from standard scale NC machine tools. Experimental observations are shown to support the discussion. The knowledge gained from these phenomena is used to nurture the design methodologies of micro-scale machines, to plan a suitable tool path and hence to improve the micromachining quality. This will also ascertain the statement that direct downscaling of current machine tools is worthless.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-244

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Alting L., Kimura F., Hansen H. N. and Bissacco G., (2003), Micro Engineering, Annals of the CIRP, 52(2), 635-657.

DOI: 10.1016/s0007-8506(07)60208-x

Google Scholar

[2] Ehmann K. F., Bourell D., Culpepper M. L., Hodgson T. J., Kurfess T. R., Madou M., Rajurkar K. and Devor R. E., (2005).

DOI: 10.21236/ada466761

Google Scholar

[3] World Technology Evaluation Center (WTEC), Inc. Baltimore, Maryland.

Google Scholar

[4] Slocum A. H., (1992), Precision machine design, Prentice Hall, Englewood Hill, Michigan, USA. Fujita H., (1998), Microactuators and micromachines, Proceedings of IEEE, 86(8), 1721-1732.

Google Scholar

[5] Mekid S., (2005), Design Strategy for Precision Engineering: Second Order Phenomena, Engineering Design, 16(1).

DOI: 10.1080/09544820512331327740

Google Scholar

[6] Trimmer W. S. N. T., (1997), Micromechanics and MEMS, Classic and Seminal papers to 1990, IEEE, New York.

Google Scholar

[7] Trimmer W. S. N., (1989), Microrobots and micromechanical systems, Sensors and Actuators, 19, 267-287.

DOI: 10.1016/0250-6874(89)87079-9

Google Scholar

[8] Ishihara H., Arai F. and Fukuda T., (1996), Micro mechatronics and micro actuators, IEEE/ASME Transaction of Mechatronics, 1, 68-79.

DOI: 10.1109/3516.491411

Google Scholar

[9] Fujita H., (1998), Microactuators and micromachines, Proceedings of IEEE, 86(8), 1721-1732.

Google Scholar

[10] Kussul E., Baidyk T., Ruiz-Huerta L., Caballero-Ruiz A. and Velasco G., (2006), Scaling down of microequipment parameters, Precision Engineering, 30, 211-222.

DOI: 10.1016/j.precisioneng.2005.08.001

Google Scholar

[11] Mekid S., Gordon A. and Nicholson P., (2004), Challenges and rationale in the design of miniaturised machine tool, International MATADOR Conference, UMIST, Manchester, 465-471.

DOI: 10.1007/978-1-4471-0647-0_69

Google Scholar

[12] Trimmer W. S. N. and Gabriel K. J., (1987), Design considerations for a practical electrostatic micromotor, Sensors Actuators, 11, 189-205.

DOI: 10.1016/0250-6874(87)80016-1

Google Scholar

[13] Li, Peiyuan, micromilling of hardened steel, thesis, 2009, TU Delft University.

Google Scholar

[14] Lu Z. and Yoneyama T., (1999), Micro cutting in the micro lathe turning system, International Jounal of Machine Tools & Manufacture, 39(7), 1171-1183.

DOI: 10.1016/s0890-6955(98)00092-3

Google Scholar

[15] Mekid, S., High Speed Desktop Ultra Precision CNC Micro/MesoMachine, World Congress on Industrial Materials Applications, Products and Technologies, Beijing, (2013).

DOI: 10.4028/www.scientific.net/amr.739.640

Google Scholar