Broadband Dielectric Spectroscopy Analysis of Dielectric Properties of Barium Titanate Ceramics

Article Preview

Abstract:

The complex dielectric behaviors of ferroelectric barium titanate (BT) ceramics were investigated. The dielectric properties were studied as a function of temperature and frequency using broadband dielectric spectrometer. The results show that the maximum value of dielectric constant occurs at 500nm BT ceramics, which is approximately 7,500; the dielectric loss is lower than 0.03 with the temperature varying from 225 K to 450 K. Dielectric constant and dielectric loss experience three dielectric peaks corresponding to rhombohedral to orthorhombic, tetragonal and cubic transitions. With the frequency ranges from 1 MHz to 1 GHz, the dielectric relaxation is apparently present. The relaxation process obeys Cole-Cole relaxation model at high temperature and conforms to Debye relaxation model when the temperature far lower than Curie temperature. The relaxation time is the order magnitude of ~10-9 s obtained by Havriliak-Negami function fitting, which is very consistent with theoretical calculation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-328

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. F. Scott and C. A. Araujo: Science 246, 1989: 1400.

Google Scholar

[2] M. Jain, N. K. Karan, R. S. Katiyar, A. S. Bhalla, F. A. Miranda and F. W. Van Keuls: Appl. Phys. Lett. 85, 2004: 275.

Google Scholar

[3] H. R. Rukmini, R. N. P. Choudhary and V. V. Rao: J. Mat. Sci. 34, 1999: 4815.

Google Scholar

[4] T.T. Fang , H. L. Hsieh and F. S. Shiau : J. Am. Ceram. Soc. 76, 1993: 1205.

Google Scholar

[5] S. Saha and T. P. Sinha:J. Appl. Phys. 99, 014109, (2006).

Google Scholar

[6] H. Kishi, Y. Mizuno and H. Chazono: Jpn. J. Appl. Phys. 42, 2003: 1.

Google Scholar

[7] K. Prabakar and S. P. Mallikarjun Rao: J. Alloys Compd. 437, 2007: 302.

Google Scholar

[8] J. Y Li, H. Kakemoto, S. Wada and T. Tsurumi: J Electroceram, 21, 2007: 427.

Google Scholar

[9] T. Teranishi, T. Hoshina and T. Tsurumi: Materials Science and Engineering: B, 161, 2009: 55.

Google Scholar

[10] X. Y. Deng, D. J. Li, J. B. Li, X. H. Wang and L. T. Li: Science in China Series E: Technological Sciences, 52(6), 2009: 1730.

Google Scholar

[11] K. Kinoshita and A. Yamaji: J. Appl. Phys. 47(1), (1976).

Google Scholar

[12] G. Arlt, D. Hennings and G. de With: J. Appl. Phys. 58 (4), 1985, 1619.

Google Scholar

[13] A. S. Shaikh, R. W. Vest, G. M. Vest: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 36(4), 1989, 407.

DOI: 10.1109/58.31776

Google Scholar

[14] B. L. Cheng, M. Gabbay, M. Maglione and G. Fantozzi: J. Electroceramics, 10, 2003: 5.

Google Scholar

[15] M. T. Buscaglia, V. Buscaglia, M. Viviani, J. Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnagea, Z. Zhao and M. Nygren: Nanotechnology 15, 2004: 1113.

DOI: 10.1088/0957-4484/15/9/001

Google Scholar

[16] L. E. Cross: Ferroelectrics, 76, 1987: 241.

Google Scholar

[17] H.C. Graham, N.M. Tallan and K.S. Mazdiyasni: J. Am. Ceram. Soc. 54, 1971: 548.

Google Scholar

[18] K. Sambasiva Rao, P. Murali Krishna and D. Madhava Prasad: phys. stat. sol. (b), 244(6), 2007: 2267.

DOI: 10.1002/pssb.200642364

Google Scholar

[19] W. L. Zong: Ferroelectric Physics. Beijing: Science publishing press, (2000).

Google Scholar

[20] K. S. Cole and R. H. Cole: J. Chem., Phys. 9, 1941: 341.

Google Scholar