Control of Wall Turbulence by Spinning Discs

Article Preview

Abstract:

This article is an extension to a previous paper of ours. It summarizes the main findingsand complements flow visualisations. An active technique for friction drag reduction in a turbulentchannel flow is studied by direct numerical simulations. The flow is modified by the steady rotationof rigid flush-mounted discs, located next to one another on the walls. The effect of the disc motionon the friction drag is investigated at a Reynolds number of Rτ =180, based on the friction velocity ofthe stationary-wall case and the half channel height. We compute a maximum drag reduction of 23%and a maximum net power saved of 10%, calculated by taking into account the power needed to rotatethe discs. The new Reynolds stress term induced by the disc rotation and generated by the velocitycomponents of the time averaged flow is shown to be instrumental for drag reduction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-143

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. J. Jung, N. Mangiavacchi, and R. Akhavan. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A, 4(8):1605--1607, 1992.

DOI: 10.1063/1.858381

Google Scholar

[2] C. Viotti, M. Quadrio, and P. Luchini. Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys. Fluids, 21(115109), 2009.

DOI: 10.1063/1.3266945

Google Scholar

[3] K-S. Choi and B. R. Clayton. The mechanism of turbulent drag reduction with wall oscillation. Int. J. Heat Fluid Flow, 22:1--9, 2001.[4] P. Ricco, C. Ottonelli, Y. Hasegawa, and M. Quadrio. Changes in turbulent dissipation in a channel flow with oscillating walls. J. Fluid Mech., 700:77--104, 2012.

DOI: 10.1017/jfm.2012.97

Google Scholar

[5] L. Keefe. A normal vorticity actuator for near-wall modification of turbulent shear flows. AIAA Paper, 97-0547, 1997.

DOI: 10.2514/6.1997-547

Google Scholar

[6] L. Keefe. Method and apparatus for reducing the drag of flows over surfaces. United States Patent, 5,803,409, 1998.

Google Scholar

[7] P. Ricco and S. Hahn. Turbulent drag reduction through rotating discs. J. Fluid Mech., 722: 267--290, 2013.

DOI: 10.1017/jfm.2013.92

Google Scholar

[8] J. F. Gibson. Channelflow: a spectral Navier-Stokes simulator in C++. "http://www.channelflow.org/'', 2006.

Google Scholar

[9] L. Kleiser and U. Schumann. Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows. In E. Hirschel, editor, Proc. 3rd GAMM Conf. Numerical Methods in Fluid Mechanics, pages 165--173. GAMM, Vieweg, 1980.

DOI: 10.1007/978-3-322-86146-7_17

Google Scholar

[10] U.M. Ascher, S.J. Ruuth, and B.T.R. Wetton. Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal., 32:797--823, 1995.

DOI: 10.1137/0732037

Google Scholar

[11] J. O. Hinze. Turbulence. McGraw Hill, Inc. -- Second Edition, 1975.

Google Scholar

[12] K-S. Choi, J. R. DeBisschop, and B. R. Clayton. Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J., 36(7):1157--1162, 1998.

DOI: 10.2514/3.13948

Google Scholar

[13] K. Fukagata, K. Iwamoto, and N. Kasagi. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids, 14(11):73--76, 2002.

DOI: 10.1063/1.1516779

Google Scholar

[14] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

Google Scholar

[15] D. Kuang-Chen Liu, J. Friend, and L. Yeo. A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Acoust. Sci. & Tech., 31:115 -- 123, 2010.

DOI: 10.1250/ast.31.115

Google Scholar

[16] L.G. Frechette, S.A. Jacobson, K.S. Breuer, F.F. Ehrich, R. Ghodssi, R. Khanna, C.W. Wong, X. Zhang, M.A. Schmidt, and A.H. Epstein. High-speed microfabricated silicon turbomachinery and fluid film bearings. J. Microel. Sys., 14(1):141--152, 2005.

DOI: 10.1109/jmems.2004.839008

Google Scholar

[17] A.P. Willis, Y. Hwang, and C. Cossu. Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow. Phys. Rev. E, 82(036321), 2010.

DOI: 10.1103/physreve.82.036321

Google Scholar

[18] A.S. Sharma, J.F. Morrison, B.J. McKeon, D.J.N. Limebeer, W.H. Koberg, and S.J. Sherwin. Relaminarisation of Re=100 channel flow with globally stabilising linear feedback control. Phys. Fluids, 23(125105):1--7, 2011.

DOI: 10.1063/1.3662449

Google Scholar

[19] M. Gad-el Hak. Compliant coatings for drag reduction. Progr. Aerosp. Sc., 38:77--99, 2002.

DOI: 10.1016/s0376-0421(01)00020-3

Google Scholar

[20] P.R. Viswanath. Aircraft viscous drag reduction using riblets. Progr. Aero. Sc., 38:571--600, 2002.

DOI: 10.1016/s0376-0421(02)00048-9

Google Scholar