Smart Nano-Systems and Inflammatory Reactions

Article Preview

Abstract:

Inflammatory pathologies are typically characterized by an oxidizing environment. Our research aims to develop smart (nano) materials that respond to oxidizing conditions in order to establish new anti-inflammatory therapies with less side effects. For example, if drugs can be released in an inflammation-responsive fashion, it is possible to localize their action and reduce their overall amount.In this communication, we specifically focus on how polysulfide-based nanomaterials (nanoparticles, micelles) react to biological oxidants, and specifically on whether their response can depend on the identity of the oxidant. We also discuss the possibility to orientate their response and expand it to chemicals they are originally not sensitive to.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. J. French and M. F. Go. Treatment and chemoprevention of NSAID-associated gastrointestinal complications. Ther. Clin. Risk Manag. (2009) 65-73.

Google Scholar

[2] I. C. West. Radicals and oxidative stress in diabetes. Diabetic Med. 17 (2000) 171-180.

Google Scholar

[3] S. Lenzen. Oxidative stress: the vulnerable beta-cell. Biochem. Soc. Trans. 36 (2008) 343-347.

Google Scholar

[4] A. Roessner, D. Kuester, P. Malfertheiner and R. Schneider-Stock. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol. Res. Pract. 204 (2008) 511-524.

DOI: 10.1016/j.prp.2008.04.011

Google Scholar

[5] H. Zhu and Y. R. Li. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp. Biol. Med. 237 (2012) 474-480.

DOI: 10.1258/ebm.2011.011358

Google Scholar

[6] M. L. Block, L. Zecca and J. S. Hong. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8 (2007) 57-69.

DOI: 10.1038/nrn2038

Google Scholar

[7] J. Y. Wang, L. L. Wen, Y. N. Huang, Y. T. Chen and M. C. Ku. Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharm. Des. 12 (2006) 3521-3533.

DOI: 10.2174/138161206778343109

Google Scholar

[8] F. Bonomini, S. Tengattini, A. Fabiano, R. Bianchi and R. Rezzani. Atherosclerosis and oxidative stress. Histol. Histopath. 23 (2008) 381-390.

Google Scholar

[9] R. M. Touyz and E. L. Schiffrin. Reactive oxygen species in vascular biology: implications in hypertension. Histochem. Cell Biol. 122 (2004) 339-352.

DOI: 10.1007/s00418-004-0696-7

Google Scholar

[10] J. E. Klaunig and L. M. Kamendulis. The role of oxidative stress in carcinogenesis. Ann. Rev. Pharmacol. 44 (2004) 239-267.

DOI: 10.1146/annurev.pharmtox.44.101802.121851

Google Scholar

[11] E. Lallana and N. Tirelli. Oxidation-Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect From Them (Biomedical Applications). Macromol. Chem. Phys. 214 (2013) 143-158.

DOI: 10.1002/macp.201200502

Google Scholar

[12] C. D. Vo, G. Kilcher and N. Tirelli. Polymers and Sulfur: what are Organic Polysulfides Good For? Preparative Strategies and Biological Applications. Macromol. Rapid Commun. 30 (2009) 299-315.

DOI: 10.1002/marc.200800740

Google Scholar

[13] A. Napoli, M. Valentini, N. Tirelli, M. Muller and J. A. Hubbell. Oxidation-responsive polymeric vesicles. Nat. Mater. 3 (2004) 183-189.

DOI: 10.1038/nmat1081

Google Scholar

[14] P. Hu and N. Tirelli. Inter-micellar dynamics in block copolymer micelles: FRET experiments of macroamphiphile and payload exchange. React. Funct. Polym. 71 (2011) 303-314.

DOI: 10.1016/j.reactfunctpolym.2010.10.010

Google Scholar

[15] A. Rehor, J. A. Hubbell and N. Tirelli. Oxidation-sensitive polymeric nanoparticles. Langmuir 21 (2005) 411-417.

DOI: 10.1021/la0478043

Google Scholar

[16] P. Hu and N. Tirelli. Scavenging ROS: Superoxide Dismutase/Catalase Mimetics by the Use of an Oxidation-Sensitive Nanocarrier/Enzyme Conjugate. Bioconjugate Chemistry 23 (2012) 438-449.

DOI: 10.1021/bc200449k

Google Scholar

[17] P. Carampin, E. Lallana, J. Laliturai, S. C. Carroccio, C. Puglisi and N. Tirelli. Oxidant-Dependent REDOX Responsiveness of Polysulfides. Macromol. Chem. Phys. 213 (2012) 2052-2061.

DOI: 10.1002/macp.201200264

Google Scholar

[18] V. V. Khutoryanskiy and N. Tirelli. Oxidation-responsiveness of nanomaterials for targeting inflammatory reactions. Pure Appl. Chem. 80 (2008) 1703-1718.

DOI: 10.1351/pac200880081703

Google Scholar

[19] A. Rehor, N. E. Botterhuis, J. A. Hubbell, N. Sommerdijk and N. Tirelli. Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. J. Mater. Chem. 15 (2005) 4006-4009.

DOI: 10.1039/b510998a

Google Scholar