Pre-Heat and Start-Up Process of High Temperature Proton Exchange Membrane Fuel Cell

Article Preview

Abstract:

High temperature proton exchange membrane fuel cell (HT-PEMFC) advances the applications of fuel cells in automobile applications, and smooth start-up is one of the critical topics in researches. This work utilizes four pre-heat fluid mediums, i.e. water, silicone oil, liquid paraffin and air, to examine the pre-heat and start-up performance of single HT-PEMFC. Experimental temperature data at 10 different locations on upper side of bipolar plates matches well with that of simulation. The results show preheating in liquid phase meets the requirements of start-up, but leads to instability in the system. So liquid cannot be employed for pre-heat. On the contrary, preheating by gas phase will achieve good start-up performance, and may be used for hybrid electric vehicle (HEV).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-178

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fengzhen Chen, T.R.C. Fernandes, Maria Yetano Roche, et al. Investigation of challenges to the utilization of fuel cell buses in the EU vs transition economies[J]. Renewable and Sustainable Energy reviews, 2007, 11 (2): 357-364.

DOI: 10.1016/j.rser.2005.01.007

Google Scholar

[2] Wang L, Husar A, Zhou T, et al. A parametric study of PEM fuel cell performances[J]. International Journal of Hydrogen Energy, 2003, 28: 1263-1272.

DOI: 10.1016/s0360-3199(02)00284-7

Google Scholar

[3] Shao, Y Y. Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges[J]. Journal of Power Sources. 2007, 167: 235-242.

DOI: 10.1016/j.jpowsour.2007.02.065

Google Scholar

[4] Saswata Bose, Tapas Kuila, Thi Xuan Hien Nguyen, et al. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges[J]. Progress in Polymer Science, 2011, 36(6): 813-843.

DOI: 10.1016/j.progpolymsci.2011.01.003

Google Scholar

[5] Chen-Yu Chen, Wei-Hsiang Lai. Effects of temperature and humidity on the cell performance and resistance of aphosphoric acid doped polybenzimidazole fuel cell[J]. Journal of Power Sources, 2010, 195: 7152–7159.

DOI: 10.1016/j.jpowsour.2010.05.057

Google Scholar

[6] Gang Liu, Huamin Zhang, Jingwei Hu, et al. Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI[J]. Journal of Power Sources, 2006, 162: 547-552.

DOI: 10.1016/j.jpowsour.2006.07.008

Google Scholar

[7] Samuele Galbiati, Andrea Baricci, Andrea Casalegno, et al. Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2462-2469.

DOI: 10.1016/j.ijhydene.2011.09.159

Google Scholar

[8] Jingwei Hu, Huamin Zhang, Yunfeng Zhai, et al. 500 h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC[J]. International Journal of Hydrogen Energy, 2006, 31(13): 1855-1862.

DOI: 10.1016/j.ijhydene.2006.05.001

Google Scholar

[9] A. Su, Y. M. Ferng, J. Hou, et al. Experimental and numerical investigations of the effects of PBI loading and operating temperature on a high-temperature PEMFC[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7710-7718.

DOI: 10.1016/j.ijhydene.2012.02.004

Google Scholar

[10] Jens Oluf Jensen, Qingfeng Li, Chao Pan, et al. High temperature PEMFC and the possible utilization of the excess heat for fuel processing[J]. International Journal of Hydrogen Energy, 2007, 32: 1567-1571.

DOI: 10.1016/j.ijhydene.2006.10.034

Google Scholar

[11] Yanghua Tang, Jianlu Zhang, et al. Single PEMFC Design and Validation for High-Temperatrue MEA Testing and Diagnosis up to 300°C[J]. Electrochemical and Solid-State Letters, 2007, 10(9): B142-B143.

DOI: 10.1149/1.2750440

Google Scholar

[12] Andreasen, S. J. Dynamic model of the high temperature proton exchange membrane fuel cell stack temperature[J]. Journal of Fuel Cell Science and Technology. 2009, 041006 (8 pp. ).

DOI: 10.1115/1.3081461

Google Scholar

[13] H. I. Lee, C. H. Lee, T. Y. Oh, et al. Development of 1 kW calss polymer electrolyte membrane fuel cell power generation system [J]. Journal of Power Sources, 2002, 107: 110-119.

DOI: 10.1016/s0378-7753(01)00989-2

Google Scholar

[14] J. Scholta, M. Messerschmidt, L. Jorissen, et al. Externally cooled high temperature polymer electrolyte membrane fuel cell stack [J]. Journal of Power Sources, 2009, 190: 83-85.

DOI: 10.1016/j.jpowsour.2008.10.124

Google Scholar

[15] Joon-Ho Koh, Andrew T. Hsu, Hasan U. Akay, et al. Analysis of overall heat balance in self-heated proton-exchange-membrane fuel cells for temperature predictions [J]. Journal of Power Sources, 2005, 144: 122-128.

DOI: 10.1016/j.jpowsour.2004.12.055

Google Scholar

[16] Young-Jun Sohn, Gu-Gon Park, Tae-Hyun Yang, et al. Operating characteristics of an air-cooling PEMFC for portable applications [J]. Journal of Power Sources, 2005, 145: 604-609.

DOI: 10.1016/j.jpowsour.2005.02.062

Google Scholar