Optical Probe in MgZnO Alloys with Varied Mg Ratios by Metalorganic Chemical Vapor Deposition

Article Preview

Abstract:

We present a study on five MgxZn1-xO samples with varied x (x = 0, 0.01, 0.06, 0.10 and 0.14), grown on sapphire substrate by Metalorganic Chemical Vapor Deposition (MOCVD). Combined photoluminescence (PL) and Raman scattering studies were carried out over a temperature range of 80K-470K, under the excitation of UV 325 nm. Temperature dependence of the PL for MgZnO with x = 0, 0.01 and 0.06 are shown. The resonance Raman longitudinal optical (LO) multiple modes are exhibited for MgZnO with x = 0.06, 0.10 and 0.14 over all temperature range. Raman shifts exhibit a quadratic dependence on temperature in the measured temperature range. These dependences can be calculated, based upon a model involving three-and four-phonon coupling. We attribute both the thermal expansion and four-phonon terms in the four-phonon anharmonic processes to describe the change of Raman shift with temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

406-410

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. D. Neumann, C. Cobet, N. Esser, B. Laumer, T. A. Wassner, M. Eickhoff, M. Feneberg, and R. Goldhahn, J. Appl. Phys. 110, 013520 (2011).

DOI: 10.1063/1.3606414

Google Scholar

[2] Leah Bergman, John L. Morrison, Xiang-Bai Chen, Jesse Huso, and Heather Hoeck, Appl. Phys. Lett. 88, 023103 (2006).

DOI: 10.1063/1.2163991

Google Scholar

[3] Jesse Huso, John L. Morrison, James Mitchell, Erin Casey, Heather Hoeck, Chris Walker, Leah Bergman, W. M. Hlaing Oo, and M. D. Mc Cluskey, Appl. Phys. Lett. 94, 061919 (2009).

DOI: 10.1063/1.3081628

Google Scholar

[4] Zhe Chuan Feng, Zinc Oxide and related Materials, CRC Talor and Francis (2012).

Google Scholar

[5] N. B. Chen, C. H. Sui, Materials Science and Engineering B. 126, 16–21 (2006).

Google Scholar

[6] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).

DOI: 10.1063/1.121384

Google Scholar

[7] Pankove J I. Optical Processes in Semiconductors. Princeton Press. 27 (1973).

Google Scholar

[8] Claus Klingshirn, Robert Hauschild, Johannes Fallert, and Heinz Kalt, Phys. Rev. B 75, 115203 (2007).

Google Scholar

[9] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

DOI: 10.1063/1.1992666

Google Scholar

[10] H. Iwanaga, A. Kunishige, S. Takeuchi, J. Materials Science 35, 2451 -2454 (2000).

Google Scholar

[11] Ramon Cuscó, Esther Alarcón-Lladó, Jordi Ibáñez, and Luis Artús, Phy Review B 75, 165202 (2007).

Google Scholar

[12] W. S. Li, Z. X. Shen, Z.C. Feng and S. J. Chua, Surf. Interface Anal. 28, 173 (1999).

Google Scholar

[13] Hua Tang and Irving P. Herman, Phys. Rev. B 43, 2299 (1991).

Google Scholar