Electrochemical Reactivity on Conducting Polymer Alloys

Article Preview

Abstract:

Embedding macromolecules and active centers such as inorganic nanoparticles into conducting polymers (CPs) has been an ongoing challenge due to the normally harsh conditions required during chemical or electrochemical polymerization that limits the selection of the functional molecules to be incorporated. By developing alternative approaches for incorporating various organic and inorganic materials into CPs it has been possible to obtain efficient charge transfer within the alloys. In this report, two facile techniques are discussed for obtaining such composites: 1) In-situ polymerisation of poly (3,4-ethylenedioxythiophene) (PEDOT) in the presence of non-conducting polymers and 2) electrochemical deposition in-organic nanoparticles inside PEDOT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

489-492

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Cao, P. Smith, A.J. Heeger, Synthetic Metals, 57 (1993) 3514-3519.

Google Scholar

[2] S. Ghosh, J. Rasmusson, O. Inganäs, Advanced Materials, 10 (1998) 1097-1099.

Google Scholar

[3] B. Winther-Jensen, K. West, Macromolecules, 37 (2004) 4538-4543.

Google Scholar

[4] T. Ahuja, I.A. Mir, D. Kumar, Rajesh, Biomaterials, 28 (2007) 791-805.

Google Scholar

[5] U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Analytica Chimica Acta, 614 (2008) 1-26.

DOI: 10.1016/j.aca.2008.02.068

Google Scholar

[6] A. Mohammadi, M.A. Hasan, B. Liedberg, I. Lundström, W.R. Salaneck, Synthetic Metals, 14 (1986) 189-197.

DOI: 10.1016/0379-6779(86)90183-9

Google Scholar

[7] B. Winther-Jensen, M. Forsyth, K. West, J.W. Andreasen, G. Wallace, D.R. MacFarlane, Organic Electronics: physics, materials, applications, 8 (2007) 796-800.

DOI: 10.1016/j.orgel.2007.07.009

Google Scholar

[8] B. Winther-Jensen, K. Fraser, C. Ong, M. Forsyth, D.R. MacFarlane, Advanced Materials, 22 (2010) 1727-1730.

DOI: 10.1002/adma.200902934

Google Scholar

[9] B.C. Thompson, O. Winther-Jensen, J. Vongsvivut, B. Winther-Jensen, D.R. MacFarlane, Macromolecular Rapid Communications, 31 (2010) 1293-1297.

DOI: 10.1002/marc.201000064

Google Scholar

[10] V. Armel, O. Winther-Jensen, R. Kerr, D.R. MacFarlane, B. Winther-Jensen, Journal of Materials Chemistry, 22 (2012) 19767-19773.

DOI: 10.1039/c2jm34214f

Google Scholar

[11] L.H. Jimison, A. Hama, X. Strakosas, V. Armel, D. Khodagholy, E. Ismailova, G.G. Malliaras, B. Winther-Jensen, R.M. Owens, Journal of Materials Chemistry, 22 (2012) 19498-19505.

DOI: 10.1039/c2jm32188b

Google Scholar

[12] B.C. Thompson, O. Winther-Jensen, B. Winther-Jensen, D.R. MacFarlane, Analytical Chemistry, 85 (2013) 3521-3525.

DOI: 10.1021/ac303354q

Google Scholar

[13] A. Izgorodin, O. Winther-Jensen, B. Winther-Jensen, D.R. MacFarlane, Physical Chemistry Chemical Physics, 11 (2009) 8532-8537.

DOI: 10.1039/b906995j

Google Scholar

[14] X. Jiang, Y. Harima, K. Yamashita, Y. Tada, J. Ohshita, A. Kunai, Chemical Physics Letters, 364 (2002) 616-620.

DOI: 10.1016/s0009-2614(02)01383-0

Google Scholar

[15] T.F. Otero, H. Grande, J. Rodríguez, Journal of Physical Chemistry B, 101 (1997) 8525-8533.

Google Scholar