Study on Nonlinear Optical Properties of BSS Material

Article Preview

Abstract:

The calculated results based on the density functional theory are employed to simulate the nonlinear optical properties of a new compound of Ba7Sn5S15 (BSS). The frequency (ω=eV/ħ) dependent SHG tensor components of the BSS are calculated from 0.0 to 2.0 eV energy range. The calculated components d31(20.3 pm/V) and d33(18.8 pm/V) are close to the experimental value of of 19.5 pm/V at a wavelength of 2.10 μm. The SHG conversion efficiency and the figure of merit of BSS material are about two fold as compared with those of AgGaS2 material. The charge transfers within the (Sn2S3) and (SnS4) polyhedrons lead to the most contribution to SHG response, and the polarity superposition of the [Sn2S3]2- groups will strengthen the crystal polarity and result in a large SHG response in a BSS material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

497-500

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.C. Wang and G. W. Racette, Measurement of parametric gain accompanying optical difference frequency generation, Appl. Phys. Lett. 6 (1965), 169-171.

DOI: 10.1063/1.1754219

Google Scholar

[2] J. A. Giordmaine and R. C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett. 14 (1965), 973-976.

DOI: 10.1103/physrevlett.14.973

Google Scholar

[3] C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, The sense-ability of semiconductor lasers - Mid-infrared tunable quantum cascade lasers for gas-sensing applications, IEEE Circuits and Devices, 16 (2000).

DOI: 10.1109/101.845908

Google Scholar

[4] C. Roller, A. A. Kosterev, F. K. Tittel, K. Uehara, C. Gmachl, D. L. Sivco, Carbonyl sulfide detection with a thermoelectric ally cooled midinfrared quantum cascade laser, Optics Letters, 28 (2003), 2052-(2054).

DOI: 10.1364/ol.28.002052

Google Scholar

[5] B. J. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, A. Y. Cho, Laser-based mid-infrared reflectance imaging of biological tissues, Optics Express, 12 (2004), 208-219.

DOI: 10.1364/opex.12.000208

Google Scholar

[6] F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission, IEEE J. Quant. Elect., 38 (2002).

DOI: 10.1109/jqe.2002.1005403

Google Scholar

[7] A. Harasaki, K. Kato, New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2, Jpn. J. Appl. Phys. PART 1-Regular Papers Short Notes & Review Papers, 36 (1997), 700-703.

DOI: 10.1143/jjap.36.700

Google Scholar

[8] R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, Broadly tunable infrared parametric oscillator using AgGaSe2, Appl. Phys. Lett. 49 (1986), 608-610.

DOI: 10.1063/1.97055

Google Scholar

[9] R. D. Peterson, K. L. Schepler, J. L. Brown, P. G. Schunemann, Damage properties of ZnGeP2 at 2-mm, J. Opt. Soc. Am. B , 12 (1995), 2142-2146.

Google Scholar

[10] Z. -Z. Luo, C. -S. Lin, W. -D. Cheng, H. Zhang, W. -L. Zhang, Z. -Z. He, Syntheses, characterization and optical properties of ternary Ba-Sn-S system compounds: acentric Ba7Sn5S15, centric BaSn2S5 and Ba6Sn7S20, Inorg. Chem. 2012, http: /dx. doi. org/10. 1021/ic301804n.

DOI: 10.1021/ic301804n

Google Scholar

[11] M. D. Segal, P. J. D. Lindan, M. J. Probert, J. Pickard, P. J. Hasnip, S. J. Clark, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Mat., 14 (2002), 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[12] R. W. Boyd, Nonlinear Optics, Academic Press, New York, 1992, pp.21-32.

Google Scholar