p.753
p.757
p.761
p.765
p.769
p.773
p.777
p.781
p.785
Phase Structure, Microstructure and Electrical Properties of Lead-Free (1-x) [Na0.515K0.485]0.94Li0.06(Nb0.99Ta0.01)O3 - BiAlO3 Ceramics
Abstract:
Lead-free (1-x)[(Na0.515K0.485)0.94Li0.06(Nb0.99Ta0.01)O3]-xBiAlO3 (NKLNT-BA; x = 0, 0.005, 0.010, 0.015, and 0.020) ceramics were fabricated by a conventional mixed-oxide method. The effects of BiAlO3 addition on the phase structure, microstructure and electrical properties of ceramic were then studied. The result indicated that grain size decreased with increasing of BiAlO3 content. In the composition range studied, the perovskite phase with the coexistence of the orthorhombic and tetragonal phases was identified at approximately x 0.005 by the X-ray diffraction analysis and dielectric spectroscopy, which led to a significant enhancement of the piezoelectric properties. The tetragonality increased with further increasing x. The temperature dependence of dielectric properties showed that the addition of BiAlO3 slightly decreased the ferroelectric tetragonal-paraelectric cubic phase transition temperature (TC), but greatly shifted the polymorphic phase transition from the ferroelectric orthorhombic to the ferroelectric tetragonal phase (TOT) to lower room temperature. The dielectric and piezoelectric properties are enhanced for the composition near the orthorhombic-tetragonal polymorphic phase boundary. The unmodified-(Na0.515K0.485)0.94Li0.06(Nb0.99Ta0.01)O3 ceramics exhibit optimum electrical properties (d33 = 225 pC/N and TC = 418°C).
Info:
Periodical:
Pages:
781-784
Citation:
Online since:
August 2013
Authors:
Keywords:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: