[1]
S. Lejeunes: A. Analysis of laminated rubber bearings with a numerical reduction model method, in: Arch Appl Mech 76, 311-326(2006).
DOI: 10.1007/s00419-006-0030-z
Google Scholar
[2]
Chang, C.H.: Modeling of the laminated rubber bearing using an analytical stiffness matrix. Int J Solid Struct 39, 6055-6078(2002).
Google Scholar
[3]
M.C. Constantinou, A. Kartoum and J.M. Kelly: Analysis of compression of hollow circular elastomeric bearings (2003).
DOI: 10.1016/0141-0296(92)90036-p
Google Scholar
[4]
R. Pullin, D.C. Carter, K.M. Holford: Damage assessment in steel bridges, Key Engineering Materials 167–168 , (1999) 335–342.
DOI: 10.4028/www.scientific.net/kem.167-168.335
Google Scholar
[5]
S.L. Burtscher and A. Dorfmann: Compression and shear tests of anisotropic high damping rubber bearing, In Engineering Structures26(2004)1979-(1991).
DOI: 10.1016/j.engstruct.2004.07.014
Google Scholar
[6]
T. D. Righiniotis and M. K. Chryssanthopoulos: Probabilistic fatigue analysis under constant amplithde loading, In Journal of Construdtional Steel Research 59(2003)867-886.
DOI: 10.1016/s0143-974x(03)00002-6
Google Scholar
[7]
Bo Wang, Hongbing Lu, Gyu-ho Kim: A damage model for the fatigue life of elastomeric materials[J]. Mechanics of Materials34(2002), 475-483.
Google Scholar
[8]
M. Imbimbo and A. De Luca: F.E. Stress analysis of rubber bearings under axial loads[J]. Computers and Structures 68(1998), 31-397.
DOI: 10.1016/s0045-7949(98)00038-8
Google Scholar
[9]
W.R. Charles, M. Gregory, C. Paul, A. Kayoko, W. Scott, Dynamic response and fatigue of steel Tied-Arch Bridge, Journal of Bridge Engineering 5 (2000) 14–21.
Google Scholar