High Density Formation of Iron Nanodots on SiO2 Induced by Remote Hydrogen Plasma

Article Preview

Abstract:

We have successfully formed Fe-nanodots with an areal dot density as high as ~2.4×1011 cm-2 on thermally grown SiO2 by exposing a 3-nm-thick Fe layer to a remote plasma of pure H2 without external heating. During remote H2 plasma exposure, the surface temperature rising up to ~500 °C was caused by surface recombination of atomic H, which enhanced surface migration of Fe atoms and promoted self-assembling nanodots. Electrical separation among Fe-nanodots was also verified from the changes in surface potential after charge injection using an AFM/Kelvin probe technique. The magnetic characterization by using magnetic force microscopy suggests that Fe-nanodots act as not only charge storage nodes but also spin-dependent active elements.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1011-1015

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron Device. 49 (2002) 1606.

Google Scholar

[2] H. Kirimura, Y. Uraoka, T. Fuyuki, M. Okuda and I. Yamashita, Appl. Phys. Lett. 86 (2005) 262106.

DOI: 10.1063/1.1954872

Google Scholar

[3] W. M. Tsang, V. Stolojan, B. J. Sealy, S. P. Wong and S.R.P. Silva, Ultramicroscopy, 107 (2007) 819.

Google Scholar

[4] K. Inomata and Y. Saito, Appl. Phys. Lett. 73 (1998) 1143.

Google Scholar

[5] M. Takata, S. Kondoh, T. Sakaguchi, H. Choi, J. -C. Shim, H. Kurino and M. Koyanagi, IEDM Tech. Dig. 2003, p.553.

Google Scholar

[6] P. Kervalishvili and A. Lagutin: Microelectron. J. 39 (2008) 1060.

Google Scholar

[7] K. Makihara, K. Shimanoe, Y. Kawaguchi, M. Ikeda, S. Higashi and S. Miyazaki, Jpn. J. Appl. Phys. 47 (2008) 3099.

Google Scholar

[8] K. Makihara, K. Shimanoe, M. Ikeda, A. Ohta, S. Higashi and S. Miyazaki, Trans. Mater. Res. Soc. Jpn. 34 (2009) 309.

Google Scholar

[9] K. Shimanoe, K. Makihara, M. Ikeda and S. Miyazaki: IEICE Trans. Electron. E-92C (2009) 616.

Google Scholar

[10] S. Miyazaki, M. Ikeda, K. Makihara, K. Shimanoe and R. Matsumoto, Solid State Phenom. 154 (2009) 95.

Google Scholar

[11] Kawanami, K. Makihara, M. Ikeda and S. Miyazaki, Jpn. J. Appl. Phys. 49 (2010) 08JA04.

Google Scholar

[12] K. Makihara, K. Shimanoe, A. Kawanami, M. Ikeda, S. Higashi and S. Miyazaki, J. Optoelectron. Adv. Mater. 12 (2010) 626.

Google Scholar