Effect Parameters of Ozonation of Dicamba in Aqueous Solution

Article Preview

Abstract:

The ozonation of dicamba in aqueous solution has been investigated in a bubble reactor in laboratory. The overall kinetics involved mass transfer step and reaction step are analyzed through two impact factors such as production percentage of O3 in mixed gas and flow rate of the mixed gas. The experimental results show that ozonation process can effectively degrade dicamba in aqueous solution. The reaction step and mass transfer step are both influenced by the changing of production percentage of O3. k value, the pseudo-first-order rate constant, increases sharply as the production percentage of O3 is rased from 40% to 50%. While the production percentage of O3 is in the range of 50%~70%, the increase of k value is slow. The concentration of O3 in liquid phase reaches an extreme value after the production percentage increases to a certain extent, which resulting in such trend. While the production percentage of O3 is fixed as 70%, k value is not basically affected by the changing of the mixed gas flow rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1258-1261

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.B. Donald, A.J. Cessna, E. Sverko, and N.E. Glozier: Environ. Health Perspect. Vol. 115(2007), pp.1183-1191.

DOI: 10.1289/ehp.9435

Google Scholar

[2] J. Filkowski, J. Besplug, P. Burke, I. Kovalchuk, and O. Kovalchuk: Mutat. Res. Vol. 542(2003), pp.23-32.

Google Scholar

[3] N.V. González, S. Soloneski, and M.L. Larramendy: Toxicol. In Vitro. Vol. 20(2006), pp.1481-1487.

Google Scholar

[4] N.V. González, S. Soloneski, and M.L. Larramendy: Journal of Hazardous Materials Vol. 163(2009), pp.337-343.

Google Scholar

[5] J. Wu, H. Doan, and S. Upreti: Chemical Engineering Journal Vol. 142(2008), pp.156-160.

Google Scholar

[6] L. Chen, and Y. Quan: CIESC Journal Vol. 62(6) (2011), pp.1569-1573(in Chinese).

Google Scholar

[7] Y. Quan, P. Zhao, and L. Chen: RSETE2012, Vol. 2(2012), pp.1525-1528.

Google Scholar

[8] T. Poznyak, G. Luis Bautista, I. Chaírez, R. Ivan Córdova, and L. Elvira Ríos: Journal of Hazardous Materials Vol. 152(2008), pp.1108-1114.

DOI: 10.1016/j.jhazmat.2007.07.098

Google Scholar

[9] W. Zhao, Q. Liao, J. Zhang, Y. Yang, J. Dai, and D. Zhao: Chemical Engineering Journal Vol. 171(2011), pp.628-639.

Google Scholar

[10] Z. He, L. Lin, S. Song, M. Xia, L. Xu, H. Ying, and J. Chen: Separation and Purification Technology Vol. 62(2008), pp.376-381.

Google Scholar

[11] L. Yuan, J. Shen, Z. Chen, and Y. Liu: Applied Catalysis B: Environmental Vol. 117-118(2012), pp.414-419.

Google Scholar

[12] L. Chen, and Y. Quan: CIESC Journal Vol. 62(2011), pp.2920-2925(in Chinese).

Google Scholar

[13] L. Chen, and Y. Quan: CIESC Journal Vol. 62(2011), pp.2926-2931(in Chinese).

Google Scholar

[14] W. Chu, and C.C. Wong: Water Research Vol. 38(2004), pp.1037-1043.

Google Scholar

[15] C. Gibb, T. Satapanajaru, S.D. Comfort , and P.J. Shea: Chemosphere Vol. 54(2004), pp.841-848.

DOI: 10.1016/j.chemosphere.2003.09.032

Google Scholar