Synthesis, Characterization and Properties of Arylamine-Acetylene Bridged Tetrahedral Cobalt and Iron Carbonyl Clusters

Article Preview

Abstract:

Four new arylamine-acetylene bridged tetrahedral iron and cobalt carbonyl clusters, [Co2(CO)4(μ-CO)2(η2, μ-TMSCCPh)2N 1, [Fe2(CO)6(μ-CO)(η2, μ-TMSCCPh)NH(PhCC TMS)] 2, [(Co2(CO)62, μ-TMSCCPh))3 3 and [(Fe2(CO)6(μ-CO)(η2, μ-TMSCCPh))2N(Ph CCTMS)] 4, were obtained by reactions of Co2(CO)8 and Fe3(CO)12 with the bis [4-((trimethylsilyl) ethynyl) phenyamine and tris [4-((trimethylsilyl) ethynyl) phenyamine compounds in suitable solvent, respectively. All clusters are confirmed by C/H elemental analysis, MS, 1HNMR and FT-IR spectroscopy. Furthermore, the electrochemical and optical properties of some clusters were also determined by cyclic voltammogram (CV) analysis and UV-Vis spectra.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1750-1753

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. D. Adams, F. A. Cotton: Catalysis by di- and polynuclear metal cluster complexes; Widely-VCH: New York (1998).

Google Scholar

[2] M. Shieh, C. -Y. Miu,Y. -Y. Chu: Coord. Chem. Rev., Vol. 256 (2012), p.637.

Google Scholar

[3] L. -M. Han, G. -B. Zhang, N. -Zhu: J. Clust. Sci. Vol. 21 (2010), p.789.

Google Scholar

[4] K. Onitsuka, N. Ohara: Organometallics Vol. 27 ( 2008), p.25.

Google Scholar

[5] H. E. Amouri, M. Gruselle: Chem. Rev. Vol. 96 (1996), p.1077.

Google Scholar

[6] H. Lang, D. S. A. George, G. Rheinwald: Coord. Chem. Rev. Vol. 206–207 (2000), p.101.

Google Scholar

[7] a) B. -H. Zhu, W. Q. Zhang, B. Hu, Z. G. Bian, Q. Y. Zhao, Y. H. Zhang, Y. Q. Yin, J. Sun: J. Organomet. Chem. Vol. 650 (2002).

Google Scholar

[8] a) B. -H. Zhu, L. Zhang, N. Xiao, J. -B. Chen, Y. -Q. Yin and J. Sun: Inorg. Chim. Acta Vol. 357(2004).

Google Scholar

[9] Y. -J. Pu, M. Soma, J. Kido and H. Nishide: Chem. Mater. Vol. 13 (2001), p.3817.

Google Scholar

[10] C. Lambert, G. Nöll and J. Schelter: Nat. Mater. Vol. 1 (2002) p.69.

Google Scholar

[11] A. Ito, M. Urabe and K. Tanaka: Angew. Chem. Int. Ed. Vol. 42 (2003), p.921.

Google Scholar

[12] J. Wu, M. Baumgarten, M. G. Debije, J. M. Warman and K. Müllen: Angew. Chem. Int. Ed. Vol. 43 (2004), p.5331.

Google Scholar

[13] S. Takahashi, Y. Kuroyama, K. Sonogashira, Hagihara: Synthesis (1980), p.627.

Google Scholar

[14] J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, S. L. Buchwald: J. Org. Chem. Vol. 65 (2000), p.1158.

Google Scholar

[15] B. -H. Zhu, H. Hong, S. Jing, P.H. Lü, J. Sun: J. Chem. Res. (2006), p.43.

Google Scholar

[16] D. Scapens, H. Adams, T. R. Johnson, etal: DaltonTrans. (2007), p.4962.

Google Scholar

[17] M. Younus, N. J. Long, P. R. Raithby, J. Lewis, N. A. Page, A. J. P. White, D. J. Williams, M. C. B. Colbert, A. J. Hodge, M. S. Khan and D. G. Parker: J. Organomet. Chem. Vol. 578, (1999), p.198.

Google Scholar

[18] K. Onitsuka, N. Ohara, F. Takei: Dalton Trans. ( 2006), p.3693.

Google Scholar

[19] N. Nakagawa, M. Murata, M. Sugimoto, and H. Nishihara: Eur. J. Inorg. Chem. ( 2006), p.2129.

Google Scholar