Surfactant CTAB-Assisted Synthesis and Gas-Sensing Characteristics of SnO2 Nanomaterials

Article Preview

Abstract:

Rutile structure SnO2 nanomaterials was successfully synthesized by cationic surfactant CTAB assisted method from inorganic precursor and alkali source (SnCl4·5H2O and NaOH) solution under microwave radiation. The final products were characterized by XRD, SEM and TEM. The results show that pure and high crystalline of SnO2 nanomaterials was obtained after calcining at 500 °C. The gas-sensing characteristics of SnO2 nanomaterials to formaldehyde, acetone, isopropyl alcohol, xylene, toluene, alcohol, gasoline, ammonia were investigated. The sensor based on SnO2 nanomaterials exhibits good response properties to isopropyl alcohol.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

241-244

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Seiyama, A. Kato, K. Fujushi, M. Nagatani, A new detector for gaseous components using semiconductive thin films, Anal. Chem. 34 (1962) 1502–1503.

DOI: 10.1021/ac60191a001

Google Scholar

[2] Q.X. Jia, W Ding, P.Q. Li, J.Y. Wei, Y. P Qing, SnO2 nanorods and hollow spheres: controlled synthesis and gas sensing properties, Sens. Actuators B 137 (2009) 490–495.

DOI: 10.1016/j.snb.2009.01.011

Google Scholar

[3] A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO andO2 using tin oxide nanowire sensors, Adv. Mater. 15 (2003) 997–1000.

DOI: 10.1002/adma.200304889

Google Scholar

[4] S. Supothina. Gas sensing properties of nanocrystalline SnO2 thin films prepared by liquid flow deposition. Sens. Actuators B 93 (2003) 526–530.

DOI: 10.1016/s0925-4005(03)00178-3

Google Scholar

[5] H.R. Kim, K.I. Choi, J.H. Lee, S.A. Akbar, Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres, Sens. Actuators B136 (2009) 138–143.

DOI: 10.1016/j.snb.2008.11.016

Google Scholar

[6] H.Y. Zhao, Y.H. Li, L.F. Yang, X.H. Wu, Synthesis, characterization and gas-sensing property for C2H5OH of SnO2 nanorods, Mater. Chem. Phys. 112 (2008) 244–248.

DOI: 10.1016/j.matchemphys.2008.05.039

Google Scholar

[7] T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, S. Matsushima, Development of SnO2–based ethanol gas sensor, Sens. Actuators B 9 (1992) 63–69.

DOI: 10.1016/0925-4005(92)80195-4

Google Scholar

[8] S.G. Dixit, A.R. Mahadeshwar, S.K. Haram, Some aspects of the role of surfactants in the formation of nanoparticles, Colloid Surf. A: Physicochem. Eng. Aspects 133 (1998) 69–75.

DOI: 10.1016/s0927-7757(97)00126-x

Google Scholar

[9] N. Yamazoe, J. Fuchigama, M. Kishikawa, T. Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surf. Sci. 86 (1979) 335–344.

DOI: 10.1016/0039-6028(79)90411-4

Google Scholar

[10] M. Batzill, U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci. 79 (2005) 47–154.

Google Scholar