Controllable Preparation of Multishaped Micro/Nanosized Hydrated Nickel Molybdate via Chelator-Assisted Hydrothermal Route

Article Preview

Abstract:

Nickel molybdate is one of the significant and frequently-used basis materials for catalyst. The micro/nanohydrated nickel molybdate with different shapes has been successfully prepared via hydrothermal route using chelator as shape-control agent under the pH values from 4.5 to 6.4. The x-ray powder diffractometry, transmission electron microscope and scanning electron microscope were employed for the characterization and analysis of the phase, morphology and size of the resulting products. The chelator plays a key role for the shape and crystalline degree of the hydrated nickel molybdate. With the pH values of the initial suspension set below 4.5 or above 6.4, no any solid products could be obtained despite using the same hydrothermal preparation conditions. The formation mechanism of the related products with multiple shapes has been proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

249-252

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Wang, H. Liang, M. Gong, Q. Su: J. Alloy Compd. Vol. 432(1-2)(2007), p.308.

Google Scholar

[2] G. Atun, N. Bodur, H. Ayyildiz, N. Ayar: Radiochim. Acta, Vol. 95(3)(2007), p.177.

Google Scholar

[3] I.V. Zatovsky, K.V. Trerbilinko, N.S. Slobobyanik, V.N. Baumer, O.V. Shishkin: J. Solid State Chem., Vol. 179(11)(2006), p.3550.

Google Scholar

[4] T. Kim, S. Kang: J. Lumin., Vol. 122-123(1-2)(2007), p.964.

Google Scholar

[5] Y. Yasui, T. Kageyama, T. Moyoshi, M. Soda, M. Sato: J. Phys. Soc. Jpn. Vol. 75 (8)(2006), p.544.

Google Scholar

[6] F. Dury, S. Meixner, D.G. Clement: J. Mol. Catal. A: Chem., Vol. 237 (1-2)(2005), p.9.

Google Scholar

[7] C. N. Satterfield: Practical Heterogeneous Catalysis, CFL Press, London, (1990).

Google Scholar

[8] S.K. Patidar, V. Tare: Bioresource Technol., Vol. 96(110)(2005), p.1215.

Google Scholar

[9] S. Chaturvedi, J.A. Rodriguez, J.L. Brito: Catal. Lett., Vol. 51(1998), p.85.

Google Scholar

[10] J.A. Rodriguez, S. Chaturvedi, J.C. Hanson: J. Phys. Chem. B, Vol. 102(1998), p.861.

Google Scholar

[11] F. Liu, S.P. Xu, L. Cao: J. Phys. Chem. C, Vol. 111(2007) , p.7396.

Google Scholar

[12] L.M. Madeira, R.M. Martin-Aranda, F.J. Maldonado: J. Catal. Vol. 169(1997) , p.469.

Google Scholar

[13] R. Zavoianua, C. R. Dias, M. F. Portela: React. Kinet. Catal. Lett., Vol. 72(2)(2001), p.201.

Google Scholar

[14] Y. Hotta, C. Duran, K. Sato, T. Nagaoka: J. Euro. Ceram. Soc., Vol. 28(3)(2008), p.599.

Google Scholar

[15] M. Chen, C. Y. Ma, T. Mahmud, J.A. Darr, X. Z. Wang: J. Supercritic. Fluids, Vol. 59(2011), p.131.

Google Scholar

[16] Z. L. Wang: J. Phys. Chem. B. Vol. 104(6)(2000), p.1153.

Google Scholar

[17] B. H. Hao, J. H. Huang, J. Beijing Petrochem. Eng. Inst., Vol. 14(2)(2006), p.58.

Google Scholar

[18] M.T. Liang, S.H. Wang, Y.L. Chang, H.I. Hsiang: Ceram. Inter., Vol. 36(3)(2010) , p.1131.

Google Scholar