[1]
S. Malinov, P. Markovsky, W. Sha, Resistivity study and computer modelling of the isothermal transformation kinetics of Ti–8Al–1Mo–1V alloy, Journal of Alloys and Compounds. 333 (2002) 122–132.
DOI: 10.1016/s0925-8388(01)01708-x
Google Scholar
[2]
S. Malinov, P. Markovsky, W. Sha, Z. Guo, Resistivity study and computer modelling of the isothermal transformation kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0. 08Si alloys, Journal of Alloys and Compounds. 314 (2001) 181–192.
DOI: 10.1016/s0925-8388(00)01227-5
Google Scholar
[3]
Chang Hui, Gautier2, Bruneseaux, Zhou Lian, β→α Isothermal Phase Transformation Kinetics in Ti—B19 Metastable Titanium Alloy, RARE METAL MATERIALS AND ENGINEERING. 35(2006), 1695-1699.
Google Scholar
[4]
J.I. Qazi, O.N. Senkov, J. Rahim, F. H, (Sam) Froes, Kinetics of martensite decomposition in Ti-6Al-4V-xH alloys, Materials Science and Engineering A. 359 (2003) 137-149.
DOI: 10.1016/s0921-5093(03)00350-2
Google Scholar
[5]
James C. Willams and Brian S. Hickman. Tempering behavior of orthorhombic martensite in titanium alloys. Metallugical Transactions. 1970, 1: 2648-2650.
DOI: 10.1007/bf03038403
Google Scholar
[6]
Morris Young, Ernest Levine and Harold Margolin. The aging martensite behavior of orthorhombic in Ti-6-2-4-6. Metallurgical transactions. 1974, 5: 1891-1898.
DOI: 10.1007/bf02644157
Google Scholar
[7]
J.D. Cotton, J.F. Bingert, P.S. Dunn, and R.A. Patterson. Microstructure and mechanical properties of Ti-40 Wt Pct Ta (Ti-15 At. Pct Ta). Metallurgical and Materials Transactions. 1994, 25A: 461-472.
DOI: 10.1007/bf02651588
Google Scholar
[8]
R. DAVIS. The decomposition of Ti-Mo alloy martensites by nucleation and growth and spinodal mechanisms. Acta metallurgua. 1979, 27: 1041-1052.
DOI: 10.1016/0001-6160(79)90192-5
Google Scholar