The Study on Fracture Behavior in Hot Compression of As-Cast Ti60 Titanium Alloy

Article Preview

Abstract:

Hot compression testing of as-cast Ti60 alloy was carried out 970-1120 °C, 0.01-10 s1 and 30-75%. The fracture behavior of the alloy was investigated by light optical microscope, scanning electron microscope. The result shows that, at high strain rate and large height reduction, 45° transgranular fracture and longitudinal intergranular fracture are observed, which are confirmed to be transgranular cleavage brittle fracture and ductile fracture respectively. Moreover, the cracking degree increases with the increasing height reduction. Besides, the alloy deformed at high temperature exhibits a good ductility, whereas lots of longitudinal cracks occurs on its surface due to the brittle alpha-case formation. Consequently, the systematic analysis on the fracture mechanism for as-cast Ti60 alloy is vitally necessary for the optimization of processing parameters in its cogging process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

725-729

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Boyer, G. Welsch, E.W. Collings (Eds. ), Materials Properties Handbook: Titanium alloys, ASM International, Materials Park, OH, 1994, pp.431-434.

Google Scholar

[2] M.E. Souni: Metall. Mater. Trans. 32A (2001) 285-293.

Google Scholar

[3] P.A. Blenkinsop, in: G. Lutjering, U. Zwicker, W. Bunk (Eds. ), Proceedings of the Fifth International Conference on Titanium, Oberursel, West Germany, Deutsche Gesellschaft fuer Metallkunde, Munich, West Germany, 1985, pp.2323-2338.

Google Scholar

[4] P.J. Bania, in: P. Lacombe, R. Tricot, G. Béranger (Eds. ): Sixth World Conference on Titanium, Les Editions de Physique, Cannes, France, 1988, pp.825-830.

Google Scholar

[5] G. Li, D. Li, Q. Wang, S. Guan, Q. Li: J. Aeronaut. Mater. 17 (1997) 21 (In Chinese).

Google Scholar

[6] S.Z. Zhang, B. Wang, Z.Q. Liu, Y. Gao, R. Yang: Chin. J. Mater. Res. 21 (2007) 6 (In Chinese).

Google Scholar

[7] W.J. Jia, W.D. Zeng, X.M. Zhang, Y.G. Zhou, J.R. Liu, Q.J. Wang: J. Mater. Sci. 46 (2011) 1351-1358.

Google Scholar

[8] W.J. Jia, W.D. Zeng, Y.G. Zhou, J.R. Liu, Q.J. Wang: Mater. Sci. Eng. A 528 (2011) 4068-4074.

Google Scholar

[9] J.R. Wood, P.A. Russo, M.F. Welter, E.M. Crist: Mater. Sci. Eng. A 243 (1998) 109-118.

Google Scholar

[10] H. Garbacz, M. Lewandowska: Mater. Chem. Phys. 81 (2003) 542-547.

Google Scholar

[11] Y.Q. Zhao, H.L. Qu, K.Y. Zhu et al.: J. Alloy Compd. 333 (2002) 165-169.

Google Scholar

[12] W.J. Jia, W.D. Zeng, J.R. Liu et al.: Mater. Sci. Eng. A 530 (2011) 511-518.

Google Scholar

[13] D.K. Shi: Fundamentals of Materials Science, China Machine Press, Beijing, China, 1999, p.259.

Google Scholar

[14] J.S. Kim, J.H. Kim, Y.T. Lee, C.G. Park, C.S. Lee: Mater. Sci. Eng. A 263 (1999) 272-280.

Google Scholar