[1]
Kocabicak U, Firat M. A Simple Approach for Multiaxial Fatigue Damage Prediction Based on FEM Post-processing [J]. Materials and Design, 2004, 25: 73 - 82.
DOI: 10.1016/s0261-3069(03)00157-2
Google Scholar
[2]
Li P, Maijer D M, Lindley T C, et al. A Through Process Model of the Impact of In-service Loading, Residual Stress, and Microstructure on the Final Fatigue Life of an A356 Automotive Wheel [J]. Material Science and Engineering A, 2007, 460: 20 - 30.
DOI: 10.1016/j.msea.2007.01.076
Google Scholar
[3]
Ramamurty R P, Satyanarayana B, Ramji K. Evaluation of Fatigue Life of Aluminum Alloy Wheels Under Radial Loads [J]. Engineering Failure Analysis, 2007, 14: 791 - 800.
DOI: 10.1016/j.engfailanal.2006.11.028
Google Scholar
[4]
Yuefeng Liu, Cuiyun Feng, Chaofu Liu. Application of FEM Analysis and Fatigue Evaluation in Designing Steel Wheel Hub [J]. Manufacturing Informatization, 2010, (6): 64 - 66.
Google Scholar
[5]
Yumei Zhang. Finite Element Analysis and Optimization of the Car Wheel [D]. Changchun: Jilin University, (2011).
Google Scholar
[6]
QC/T 221 - 1997, Performance Requirements and Test Methods of Light Alloy Automotive Wheels [S].
Google Scholar
[7]
Rong Zhou, Jicheng Liu, Shengmin Cui, Guifan Zhao. Automotive Wheel's Bending Fatigue Test Computer Simulation [J]. Test and Research, 2000, (1): 31 - 33.
Google Scholar
[8]
Jingyong Li. The Finite Element Method. Beijing: Beijing University of Posts and Telecommunications Press, (2002).
Google Scholar
[9]
Guoquan Huang. Finite Element Method Basics and the Application of ANSYS. Beijing: Machinery Industry Press, (2004).
Google Scholar