A Survey of General Purpose Computation of GPU for Computational Fluid Dynamics

Article Preview

Abstract:

The graphics processing unit (GPU) has evolved from configurable graphics processor to a powerful engine for high performance computer. In this paper, we describe the graphics pipeline of GPU, and introduce the history and evolution of GPU architecture. We also provide a summary of software environments used on GPU, from graphics APIs to non-graphics APIs. At last, we present the GPU computing in computational fluid dynamics applications, including the GPGPU computing for Navier-Stokes equations methods and the GPGPU computing for Lattice Boltzmann method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 753-755)

Pages:

2731-2735

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hwu, W. W., Keutzer, K., Mattson, T.: IEEE Des and Test Comput. Vol. 25 (2008), pp.312-320.

DOI: 10.1109/mdt.2008.110

Google Scholar

[2] D. Blythe: Proc. of the IEEE. Vol. 96(2008), pp.761-778.

Google Scholar

[3] Information on: http: /www. bitsavers. org/pdf/ibm/2250/Z22-1848-0_2250prelimUG. pdf.

Google Scholar

[4] Berry, Wayne F, U.S. Patent 5, 150, 109. (1992).

Google Scholar

[5] Cook, Robert L.: SIGGRAPH Comput. Graph. Vol. 18 (1984), pp.223-231.

Google Scholar

[6] Graphics, Silicon: OpenGL Reference Manual (Addison-Wesley Publishing Company, USA 1992).

Google Scholar

[7] Gray, Kris: Microsoft DirectX 9 programmable graphics pipeline (Microsoft Press, USA 2003).

Google Scholar

[8] Mark, William R. etc.: ACM Trans. Graph. Vol. 22(2003), pp.896-907.

Google Scholar

[9] McCool, etc.: ACM Trans. Graph. Vol. 23(2004), pp.787-795.

Google Scholar

[10] Buck, etc.: ACM Trans. Graph. Vol. 23(2004), pp.777-786.

Google Scholar

[11] Information on: http: /developer. amd. com/gpu/ATIStreamSDK/assets/ATI_Intermediate_La- nguage_(IL)_Specification_ v2d. pdf.

Google Scholar

[12] Information on: http: /www. nvidia. com/CUDA.

Google Scholar

[13] Khronos OpenCL Working Group and others: A. Munshi, Ed. (2008).

Google Scholar

[14] E. Phillips etc. In: 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (2009).

Google Scholar

[15] E. Elsen, P. LeGresley and E. Darve: J. COMPUT. PHYS. Vol. 227(2008), pp.10148-10161.

Google Scholar

[16] M. Tuttafesta, G. Colonna and G. Pascazio: Comput. Phys. Commun. Vol. 184(2013), pp.1497-1510.

Google Scholar

[17] A. Corrigan etc. In: 19th AIAA Computational Fluid Dynamics, San Antonio, Texas (2009).

Google Scholar

[18] I.C. Kampolis etc.: COMPUT. METHOD APPL. M. Vol. 199(2010), pp.712-722.

Google Scholar

[19] Asouti, V. G. etc.: INT. J. NUMER METH. FL. Vol. 67(2011), pp.232-246.

Google Scholar

[20] D. Chandar, J. Sitaraman and D. Mavriplis In: 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii(2011).

DOI: 10.2514/6.2011-3222

Google Scholar

[21] J. C. Thibault etc. In: 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (2009).

Google Scholar

[22] Jacobsen, D. A., Thibault, J. C., and Senocak, I. In: 48th AIAA Aerospace Science Meeting, Orlando, Florida (2011).

Google Scholar

[23] Dana A. Jacobsen and I. Senocak: PARALLEL COMPUT. Vol. 39(2013), pp.1-20.

Google Scholar

[24] Jonas Tölke: Comput. Vis. Sci. Vol. 13(2009), pp.29-39.

Google Scholar

[25] J. Tölke, M. Krafczyk: Int. J. Comput. Fluid Dyn. Vol. 22(2008), pp.443-456.

Google Scholar

[26] Bailey, P. etc. In: ICPP '09. Vienna, Austria(2009).

Google Scholar

[27] Myre, J. etc.: CONCURR. COMP. PRACT. E. Vol. 23(2011), p.332–350.

Google Scholar