[1]
E. Szmidt and J. Kacprzyk. Distances between intuitionistic fuzzy sets: Fuzzy Set Syst 114 (2000), p.505.
DOI: 10.1016/s0165-0114(98)00244-9
Google Scholar
[2]
E. Szmidt and J. Kacprzyk. A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning: Lect Notes Comput Sci 3070 (2004), p.388.
DOI: 10.1007/978-3-540-24844-6_56
Google Scholar
[3]
D. F. Li and C. T. Cheng. New similarity measures of intuitionistic fuzzy sets and application to pattern recognition: Pattern Recogn Lett 23 (2002), p.221.
DOI: 10.1016/s0167-8655(01)00110-6
Google Scholar
[4]
J. F. Pang and J. Y. Liang. Evaluation of the results o fmulti-attribute group decision-making with linguistic information: Omega-Int J Manage Sci 40 (2012), p.294.
DOI: 10.1016/j.omega.2011.07.006
Google Scholar
[5]
L. A. Zadeh. Fuzzy sets: Inform Contro 8 (1965), p.338.
Google Scholar
[6]
Z. L. Yue. An extended TOPSIS for determining weights of decision makers with interval numbers: Knowl-based Syst 24 (2011), p.146.
DOI: 10.1016/j.knosys.2010.07.014
Google Scholar
[7]
K. T. Atanassov. Two theorems for intuitionistic fuzzy sets: Fuzzy Set Syst 110 (2000), p.267.
DOI: 10.1016/s0165-0114(99)00112-8
Google Scholar
[8]
M. M. Xia and Z. S. Xu. Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment: Info Fus 13 (2012), p.31.
DOI: 10.1016/j.inffus.2010.12.001
Google Scholar
[9]
M. M. Xia and Z. S. Xu. Group decision making based on intuitionistic multiplicative aggregation operators: Appl Math Model 37 (2013), p.5120.
DOI: 10.1016/j.apm.2012.10.029
Google Scholar
[10]
E. Szmidt and J. Kacprzyk. Using intuitionistic fuzzy sets in group decision making: Control Cybern 31 (2002), p.1055.
Google Scholar
[11]
Z. S. Xu. Intuitionistic preference relations and their application in group decision making: Inform Sci 17 (2007), p.2363.
Google Scholar
[12]
Z. W. Gong, L. S. Li, F. X. Zhou and T. X. Yao. Goal programming approaches to obtain the priority vectors from the intuitionistic fuzzy preference relations: Comput Ind Eng 57 (2009), p.1187.
DOI: 10.1016/j.cie.2009.05.007
Google Scholar
[13]
Z. S. Xu. Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making: group Decis Negotiation (2011), p. in Press.
DOI: 10.1007/s10726-011-9278-y
Google Scholar
[14]
J. Wu and F. Chiclana. Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations: Expert Syst Appl 39 (2012), p.13409.
DOI: 10.1016/j.eswa.2012.05.062
Google Scholar
[15]
Z. S. Xu. An error-analysis-based method for the priority of an intuitionistic preference relation in decision making: Knowl-based Syst 33 (2012), p.173.
DOI: 10.1016/j.knosys.2012.03.009
Google Scholar
[16]
Z. J. Wang. Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations: Appl Math Model (2013), p. In Press.
DOI: 10.1016/j.apm.2013.01.021
Google Scholar
[17]
M. M. Xia, Z. S. Xu and H. C. Liao. Preference Relations Based on Intuitionistic Multiplicative Information: Ieee T Fuzzy Syst 21 (2013), p.113.
DOI: 10.1109/tfuzz.2012.2202907
Google Scholar
[18]
Y. Jiang, Z. S. Xu and X. H. Yu. Compatibility measures and consensus models for group decision making with intuitionistic multiplicative preference relations: Appl Soft Comp 13 (2013), p. (2075).
DOI: 10.1016/j.asoc.2012.11.007
Google Scholar
[19]
N. Bolloju. Aggregation of analytic hierarchy process models based on similarities in decision makers' preferences: Eur J Oper Res 128 (2001), p.499.
DOI: 10.1016/s0377-2217(99)00369-0
Google Scholar
[20]
M. T. Escobar, J. Aguarón and J. M. Moreno-Jiménez. A note on AHP group consistency for the row geometric mean priorization procedure: Eur J Oper Res 153 (2004), p.318.
DOI: 10.1016/s0377-2217(03)00154-1
Google Scholar
[21]
D. H. Hong and C. Kim. A note on similarity measures between vague sets and between elements: Inform Sci 115 (1999), p.83.
DOI: 10.1016/s0020-0255(98)10083-x
Google Scholar
[22]
Z. S. Xu and R. R. Yager. On consensus in group decision making based on intuitionistic fuzzy preference relations: in: Technical Report, (2007).
Google Scholar
[23]
K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg, (1999).
Google Scholar
[24]
K. T. Atanassov. Intuitionistic fuzzy sets: Fuzzy Set Syst 20 (1986), p.87.
Google Scholar
[25]
S. K. De, R. Biswas and A. R. Roy. Some operations on intuitionistic fuzzy sets: Fuzzy Set Syst 114 (2000), p.477.
DOI: 10.1016/s0165-0114(98)00191-2
Google Scholar
[26]
Z. S. Xu. Intuitionistic preference relations and their application in group decision making: Inform Sci 177 (2007), p.2363.
Google Scholar
[27]
Z. S. Xu and R. R. Yager. Some geometric aggregation operators based on intuitionistic fuzzy sets: Int J Gen Syst 36 (2006), p.417.
DOI: 10.1080/03081070600574353
Google Scholar
[28]
Z. S. Xu. Intuitionistic fuzzy aggregation operators: Ieee T Fuzzy Syst 15 (2007), p.1179.
DOI: 10.1109/tfuzz.2006.890678
Google Scholar
[29]
J. Barzilai and B. Golany. AHP rank reversal normalization and aggregation rules: Infor Journal 32 (1994), p.57.
DOI: 10.1080/03155986.1994.11732238
Google Scholar
[30]
F. Boran, M. Kurt and D. Akay. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method: Expert Syst Appl 36 (2009), p.11363.
DOI: 10.1016/j.eswa.2009.03.039
Google Scholar