Research on the IAMM and IGMM Operators in Group Decision Making with Intuitionistic Preference Relations

Article Preview

Abstract:

Preference relations are the most common techniques to express decision makers preference information over alternatives or criteria. This paper focus on investigating effective operators for multiple attribute group decision making with intuitionistic fuzzy preference relations. Firstly, we extend arithmetic mean method operator and geometric mean method operator for accommodating intuitionistic fuzzy information to present the intuitionistic arithmetic mean method (IAMM) operator and the intuitionistic geometric mean method (IGMM) operator. Then the compatibility properties of intuitionistic preference relations obtained by IAMM and IGMM are analyzed, we found that aggregation of individual judgments and aggregation of individual priorities provide the same priorities of alternatives, and that if all the individual decision makers have acceptable consensus degree, then the collective preference relations obtained also are of acceptable consensus degree. Finally, the results are verified by an illustrative example carried out in the background of parts supplier selection.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 753-755)

Pages:

2806-2815

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Szmidt and J. Kacprzyk. Distances between intuitionistic fuzzy sets: Fuzzy Set Syst 114 (2000), p.505.

DOI: 10.1016/s0165-0114(98)00244-9

Google Scholar

[2] E. Szmidt and J. Kacprzyk. A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning: Lect Notes Comput Sci 3070 (2004), p.388.

DOI: 10.1007/978-3-540-24844-6_56

Google Scholar

[3] D. F. Li and C. T. Cheng. New similarity measures of intuitionistic fuzzy sets and application to pattern recognition: Pattern Recogn Lett 23 (2002), p.221.

DOI: 10.1016/s0167-8655(01)00110-6

Google Scholar

[4] J. F. Pang and J. Y. Liang. Evaluation of the results o fmulti-attribute group decision-making with linguistic information: Omega-Int J Manage Sci 40 (2012), p.294.

DOI: 10.1016/j.omega.2011.07.006

Google Scholar

[5] L. A. Zadeh. Fuzzy sets: Inform Contro 8 (1965), p.338.

Google Scholar

[6] Z. L. Yue. An extended TOPSIS for determining weights of decision makers with interval numbers: Knowl-based Syst 24 (2011), p.146.

DOI: 10.1016/j.knosys.2010.07.014

Google Scholar

[7] K. T. Atanassov. Two theorems for intuitionistic fuzzy sets: Fuzzy Set Syst 110 (2000), p.267.

DOI: 10.1016/s0165-0114(99)00112-8

Google Scholar

[8] M. M. Xia and Z. S. Xu. Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment: Info Fus 13 (2012), p.31.

DOI: 10.1016/j.inffus.2010.12.001

Google Scholar

[9] M. M. Xia and Z. S. Xu. Group decision making based on intuitionistic multiplicative aggregation operators: Appl Math Model 37 (2013), p.5120.

DOI: 10.1016/j.apm.2012.10.029

Google Scholar

[10] E. Szmidt and J. Kacprzyk. Using intuitionistic fuzzy sets in group decision making: Control Cybern 31 (2002), p.1055.

Google Scholar

[11] Z. S. Xu. Intuitionistic preference relations and their application in group decision making: Inform Sci 17 (2007), p.2363.

Google Scholar

[12] Z. W. Gong, L. S. Li, F. X. Zhou and T. X. Yao. Goal programming approaches to obtain the priority vectors from the intuitionistic fuzzy preference relations: Comput Ind Eng 57 (2009), p.1187.

DOI: 10.1016/j.cie.2009.05.007

Google Scholar

[13] Z. S. Xu. Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making: group Decis Negotiation (2011), p. in Press.

DOI: 10.1007/s10726-011-9278-y

Google Scholar

[14] J. Wu and F. Chiclana. Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations: Expert Syst Appl 39 (2012), p.13409.

DOI: 10.1016/j.eswa.2012.05.062

Google Scholar

[15] Z. S. Xu. An error-analysis-based method for the priority of an intuitionistic preference relation in decision making: Knowl-based Syst 33 (2012), p.173.

DOI: 10.1016/j.knosys.2012.03.009

Google Scholar

[16] Z. J. Wang. Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations: Appl Math Model (2013), p. In Press.

DOI: 10.1016/j.apm.2013.01.021

Google Scholar

[17] M. M. Xia, Z. S. Xu and H. C. Liao. Preference Relations Based on Intuitionistic Multiplicative Information: Ieee T Fuzzy Syst 21 (2013), p.113.

DOI: 10.1109/tfuzz.2012.2202907

Google Scholar

[18] Y. Jiang, Z. S. Xu and X. H. Yu. Compatibility measures and consensus models for group decision making with intuitionistic multiplicative preference relations: Appl Soft Comp 13 (2013), p. (2075).

DOI: 10.1016/j.asoc.2012.11.007

Google Scholar

[19] N. Bolloju. Aggregation of analytic hierarchy process models based on similarities in decision makers' preferences: Eur J Oper Res 128 (2001), p.499.

DOI: 10.1016/s0377-2217(99)00369-0

Google Scholar

[20] M. T. Escobar, J. Aguarón and J. M. Moreno-Jiménez. A note on AHP group consistency for the row geometric mean priorization procedure: Eur J Oper Res 153 (2004), p.318.

DOI: 10.1016/s0377-2217(03)00154-1

Google Scholar

[21] D. H. Hong and C. Kim. A note on similarity measures between vague sets and between elements: Inform Sci 115 (1999), p.83.

DOI: 10.1016/s0020-0255(98)10083-x

Google Scholar

[22] Z. S. Xu and R. R. Yager. On consensus in group decision making based on intuitionistic fuzzy preference relations: in: Technical Report, (2007).

Google Scholar

[23] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg, (1999).

Google Scholar

[24] K. T. Atanassov. Intuitionistic fuzzy sets: Fuzzy Set Syst 20 (1986), p.87.

Google Scholar

[25] S. K. De, R. Biswas and A. R. Roy. Some operations on intuitionistic fuzzy sets: Fuzzy Set Syst 114 (2000), p.477.

DOI: 10.1016/s0165-0114(98)00191-2

Google Scholar

[26] Z. S. Xu. Intuitionistic preference relations and their application in group decision making: Inform Sci 177 (2007), p.2363.

Google Scholar

[27] Z. S. Xu and R. R. Yager. Some geometric aggregation operators based on intuitionistic fuzzy sets: Int J Gen Syst 36 (2006), p.417.

DOI: 10.1080/03081070600574353

Google Scholar

[28] Z. S. Xu. Intuitionistic fuzzy aggregation operators: Ieee T Fuzzy Syst 15 (2007), p.1179.

DOI: 10.1109/tfuzz.2006.890678

Google Scholar

[29] J. Barzilai and B. Golany. AHP rank reversal normalization and aggregation rules: Infor Journal 32 (1994), p.57.

DOI: 10.1080/03155986.1994.11732238

Google Scholar

[30] F. Boran, M. Kurt and D. Akay. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method: Expert Syst Appl 36 (2009), p.11363.

DOI: 10.1016/j.eswa.2009.03.039

Google Scholar