The Construction for Generalized Mandelbrot Sets of the Frieze Group

Article Preview

Abstract:

By an analysis of symmetric features of equivalent mappings of the frieze group, a definition of their generalized Mandelbrot sets is given and a novel method for constructing generalized Mandelbrot sets of equivalent mappings of frieze group is presented via utilizing the Ljapunov exponent as the judgment standard. Based on generating parameter space of dynamical system, lots of patterns of generalized Mandelbrot sets are produced.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

2562-2566

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. G. Uday, C. Virendra. Bhavsar. Fractals from z <- z alpha + c in the complex c-plane: Computers & Graphics , Vol. 15 (1991), pp.441-449, (1991).

DOI: 10.1016/0097-8493(91)90015-a

Google Scholar

[2] S. W. Ken. An investigation of fractals generated by z -> 1/zn + c : Computers & Graphics , Vol. 17, (1993), pp.603-607.

Google Scholar

[3] N. Chen, W. Zhu. Bud-sequnce conjecture on M fractal image and M-J conjecture between c and z planes from : Computers & Graphics, Vol. 22 (1998), pp.537-546.

DOI: 10.1016/s0097-8493(98)00051-x

Google Scholar

[4] K.W. Chung, H.S.Y. Chan and N. Chen. General Mandelbrot Sets and Julia Sets with color symmetry from equivariant Mappings of the modular Group: Computer & Graphics, Vol. 24 (2000), p.911~918.

DOI: 10.1016/s0097-8493(00)00093-5

Google Scholar

[5] M. Field, M. Golubitsky. Symmetry in Chaos: Ox ford University Press, NewYork (1992).

Google Scholar

[6] B. Grunbaum , G. C. Shephard. Tilings and patterns: Freeman, New York (1996).

Google Scholar

[7] N. Carter, R. Eagles and S. Grimes. Chaotic attractors with discrete planar symmetries: Chaos Solitions and Fractals, Vol. 9 (1998), p.2031- (2054).

DOI: 10.1016/s0960-0779(97)00157-4

Google Scholar

[8] J. C. Sprott. Strange attractor symmetric icons: Computers and Graphics, Vol. 20 (1996), p.325~32.

DOI: 10.1016/0097-8493(95)00133-6

Google Scholar

[9] N. Chen, Z. Li , Y. Jin. Visual presentation of dynamic systems with hyperbolic planar symmetry. Chaos: Solitons & Fractals, Vol. 40 (2009), pp.621-634.

DOI: 10.1016/j.chaos.2007.08.020

Google Scholar

[10] N. Chen, X. L. Zhu and K. W. Chung. M and J sets from Newton's transformation of the transcendental mapping F ( z ) = ezw+ c with VCPS: Computers & Graphics, Vol. 26 (2002), pp.371-383.

DOI: 10.1016/s0097-8493(01)00185-6

Google Scholar

[11] B. Goertzel. Rapid generation of strange attractors with the eugenic genetic algorithm: Computers & Graphics, Vol. 19 (1995), p.151~156.

DOI: 10.1016/0097-8493(94)00130-q

Google Scholar

[12] J. Dumont, F. Heiss. Chaotic attractors and evolving planar symmetry: Computer & Graphics, Vol. 23 (1999), p.613~619.

DOI: 10.1016/s0097-8493(99)00079-5

Google Scholar

[13] C. J. Kevin, A. R. Clifford. Chaotic attractors with cyclic symmetry revisited: Computer & Graphics, Vol. 24 (2000), p.271~282.

Google Scholar