[1]
G. G. Uday, C. Virendra. Bhavsar. Fractals from z <- z alpha + c in the complex c-plane: Computers & Graphics , Vol. 15 (1991), pp.441-449, (1991).
DOI: 10.1016/0097-8493(91)90015-a
Google Scholar
[2]
S. W. Ken. An investigation of fractals generated by z -> 1/zn + c : Computers & Graphics , Vol. 17, (1993), pp.603-607.
Google Scholar
[3]
N. Chen, W. Zhu. Bud-sequnce conjecture on M fractal image and M-J conjecture between c and z planes from : Computers & Graphics, Vol. 22 (1998), pp.537-546.
DOI: 10.1016/s0097-8493(98)00051-x
Google Scholar
[4]
K.W. Chung, H.S.Y. Chan and N. Chen. General Mandelbrot Sets and Julia Sets with color symmetry from equivariant Mappings of the modular Group: Computer & Graphics, Vol. 24 (2000), p.911~918.
DOI: 10.1016/s0097-8493(00)00093-5
Google Scholar
[5]
M. Field, M. Golubitsky. Symmetry in Chaos: Ox ford University Press, NewYork (1992).
Google Scholar
[6]
B. Grunbaum , G. C. Shephard. Tilings and patterns: Freeman, New York (1996).
Google Scholar
[7]
N. Carter, R. Eagles and S. Grimes. Chaotic attractors with discrete planar symmetries: Chaos Solitions and Fractals, Vol. 9 (1998), p.2031- (2054).
DOI: 10.1016/s0960-0779(97)00157-4
Google Scholar
[8]
J. C. Sprott. Strange attractor symmetric icons: Computers and Graphics, Vol. 20 (1996), p.325~32.
DOI: 10.1016/0097-8493(95)00133-6
Google Scholar
[9]
N. Chen, Z. Li , Y. Jin. Visual presentation of dynamic systems with hyperbolic planar symmetry. Chaos: Solitons & Fractals, Vol. 40 (2009), pp.621-634.
DOI: 10.1016/j.chaos.2007.08.020
Google Scholar
[10]
N. Chen, X. L. Zhu and K. W. Chung. M and J sets from Newton's transformation of the transcendental mapping F ( z ) = ezw+ c with VCPS: Computers & Graphics, Vol. 26 (2002), pp.371-383.
DOI: 10.1016/s0097-8493(01)00185-6
Google Scholar
[11]
B. Goertzel. Rapid generation of strange attractors with the eugenic genetic algorithm: Computers & Graphics, Vol. 19 (1995), p.151~156.
DOI: 10.1016/0097-8493(94)00130-q
Google Scholar
[12]
J. Dumont, F. Heiss. Chaotic attractors and evolving planar symmetry: Computer & Graphics, Vol. 23 (1999), p.613~619.
DOI: 10.1016/s0097-8493(99)00079-5
Google Scholar
[13]
C. J. Kevin, A. R. Clifford. Chaotic attractors with cyclic symmetry revisited: Computer & Graphics, Vol. 24 (2000), p.271~282.
Google Scholar