[1]
Victor K. Wei, Generalized hamming weights for linear codes, Transactions on Information Theory, vol. 37, no. 5, pp.1412-1413( 1991).
DOI: 10.1109/18.133259
Google Scholar
[2]
G. L. Feng, K. K. Tzeng, and V. K. Wei, On the generalized Hamming weights of several classes of cyclic codes, , IEEE Trans. Inform. Theory, vol. 38, pp.1125-1130( 1992).
DOI: 10.1109/18.135653
Google Scholar
[3]
Munuera C., Ramirez D., The second and third generalized Hamming weights of Hermitian codes,. IEEE Trans. Inform. Theory, vol. 45, p.709–713(1999).
DOI: 10.1109/18.749019
Google Scholar
[4]
Munuera C., On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inform. Theory, vol. 40, p.2092–2099(1994).
DOI: 10.1109/18.340488
Google Scholar
[5]
H. Stichtenoth, Algebraic function fields and codes, Springer Universitext(1998, The second version).
Google Scholar
[6]
Wolfmann, New bounds on cyclic codes from algebraic curves, in Lecture Notes in Computer Science, vol. 388. New York: Springer-Verlag, pp.47-62(1988).
DOI: 10.1007/bfb0019846
Google Scholar
[7]
Wanbao Hu, Generalized hamming weight of algebraic geometric codes from algebraic curves, J. of university of science and technology of China, vol. 33, no. 6, pp.641-645(2003).
Google Scholar
[8]
Masaaki Homma, Seon Jeong Kim, The second generalized Hamming weight for two-point codes on a Hermitian curve, Des. Codes Cryptogr. Vol. 50, p.1–40(2009).
DOI: 10.1007/s10623-008-9210-x
Google Scholar