Blind Image Separation Based on an Optimized Fast Fixed Point Algorithm

Article Preview

Abstract:

An optimized fast fixed point algorithm based on modified Newton iteration method has been proposed. With good performance ofthe blind image separation, the optimized algorithm can improve the convergence speed greatly.We proposed a new adaptive enhancement parameter to enhance the separated images effectively. The experimental results demonstrate that the new algorithm is superior.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

3578-3583

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Hyvarinen, J. Karhunen and E. Oja, Independent Component Analysis. John Wiley and Sons, Inc, New York, (2001).

Google Scholar

[2] B. Ahmed,A. U. Alam E.H. Chowdhury and T. E. Mursalin, Analysis of visual cortex-event-related fMRI data using ICA decomposition, International Journal of Biomedical Engineering and Technology, vol. 7, 2011, pp.365-376.

DOI: 10.1504/ijbet.2011.044415

Google Scholar

[3] E.B. Beall M.J. Lowe, The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T, Journal of Neuroscience Methods, vol. 191, 2010, pp.263-276, doi: 10. 1016/j. jneumeth. 2010. 06. 024.

DOI: 10.1016/j.jneumeth.2010.06.024

Google Scholar

[4] G. R. Naik, A comparison of ICA algorithms in surface EMG signal processing, International Journal of Biomedical Engineering and Technology, vol. 6, 2011, pp.363-374, doi: 10. 1504/IJBET. 2011. 41774.

DOI: 10.1504/ijbet.2011.041774

Google Scholar

[5] I.R. Farah andM.B. Ahmed, Towards an intelligent multi-sensor satellite image analysis based on blind source separation using multi-source image fusion, International Journal of Remote Sensing, vol. 31, Jan. 2010, pp.13-38.

DOI: 10.1080/01431160902882504

Google Scholar