[1]
Z. Ghahramani, Unsupervised learning. Adv. Lect. Machine Learning, 72 (2004).
Google Scholar
[2]
L. K. Saul and S. T. Roweis, Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119 (2003).
Google Scholar
[3]
N. Cristianini, J. Shawe-Taylor, Elisseeff A, et al. On kernel-target alignment [J]. In Advances in Neural Information Processing Systems (NIPS). 2002, 14: 367–373.
Google Scholar
[4]
C. Cortes, M. Mohri, A. Roatamizadeh. Two-stage learning kernel algorithms. Proc. of the 27th IICML (2010).
Google Scholar
[5]
H. Saigo, J. P. Vert, et al. Protein homology detection using string alignment kernels. Bioinformatics, 2004, 20(11): 1682-1689.
DOI: 10.1093/bioinformatics/bth141
Google Scholar
[6]
S. Mika, B. Schölkophf, A. Smola, K. -R. Müller, M. Scholz, and G. Rätsch. Kernel PCA and de-noising in feature spaces. In Advances in Neural Information Processing Systems 11, 1999. 783-789.
Google Scholar
[7]
R. K. Tyson. Adaptive optics engineering handbook. (CRC Press 1999).
Google Scholar
[8]
A. Vyas, M. B. Roopashree, B. R. Prasad. Extrapolating Zernike Moments to Predict Future Optical Wave-fronts in Adaptive Optics Using Real Time Data Mining, (2010).
Google Scholar
[9]
H. E. Rushmeier, K. E. Torrance. The zonal method for calculating light intensities in the presence of a participating (1987).
DOI: 10.1145/37402.37436
Google Scholar
[10]
G. M. Dai. Modal wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions. (1996).
DOI: 10.1364/josaa.13.001218
Google Scholar
[11]
W. H. Jiang, H. G. Li. Hartmann-Shack wavefront sensing and wavefront control algorithm. SPIE, 1271: 8293( 1990).
Google Scholar
[12]
M. Stangalini, D. D. Moro, F. Berrilli, O. Lühe. Zernike basis optimization for solar adaptive optics by using information theory. (2010).
DOI: 10.1364/ao.49.002090
Google Scholar
[13]
R. J. Noll. Zernike polynomials and atmospheric turbulence. (1976).
Google Scholar
[14]
B. Schölkopf, A. Smola, K. R. Müller. Nonlinear component analysisas a kernel eigenvalue problem. (1998).
Google Scholar
[15]
S. Saitoh. Theory of reproducing Kernels and its Applications. Longman Scientific & Technical, Harlow, England (1988).
Google Scholar
[16]
B. Schölkopf. Support vector learning. Oldenbourg Verlag, Munich, (1997).
Google Scholar