Kernel Methods and its Application in Wavefront Reconstruction

Article Preview

Abstract:

Kernel methods can effectively deal with the nonlinear problem. The methods not only can be used for data de-noising, also be effective for classification problems. Using kernel PCA method, we provide a more precise Zernike expansion, which can apparently improve the reconstruction accuracy. At the same time, explore learning the kernel function by the alignment. We verify that the alignment value and recognition rate is proportional relationship.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

3596-3601

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Ghahramani, Unsupervised learning. Adv. Lect. Machine Learning, 72 (2004).

Google Scholar

[2] L. K. Saul and S. T. Roweis, Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119 (2003).

Google Scholar

[3] N. Cristianini, J. Shawe-Taylor, Elisseeff A, et al. On kernel-target alignment [J]. In Advances in Neural Information Processing Systems (NIPS). 2002, 14: 367–373.

Google Scholar

[4] C. Cortes, M. Mohri, A. Roatamizadeh. Two-stage learning kernel algorithms. Proc. of the 27th IICML (2010).

Google Scholar

[5] H. Saigo, J. P. Vert, et al. Protein homology detection using string alignment kernels. Bioinformatics, 2004, 20(11): 1682-1689.

DOI: 10.1093/bioinformatics/bth141

Google Scholar

[6] S. Mika, B. Schölkophf, A. Smola, K. -R. Müller, M. Scholz, and G. Rätsch. Kernel PCA and de-noising in feature spaces. In Advances in Neural Information Processing Systems 11, 1999. 783-789.

Google Scholar

[7] R. K. Tyson. Adaptive optics engineering handbook. (CRC Press 1999).

Google Scholar

[8] A. Vyas, M. B. Roopashree, B. R. Prasad. Extrapolating Zernike Moments to Predict Future Optical Wave-fronts in Adaptive Optics Using Real Time Data Mining, (2010).

Google Scholar

[9] H. E. Rushmeier, K. E. Torrance. The zonal method for calculating light intensities in the presence of a participating (1987).

DOI: 10.1145/37402.37436

Google Scholar

[10] G. M. Dai. Modal wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions. (1996).

DOI: 10.1364/josaa.13.001218

Google Scholar

[11] W. H. Jiang, H. G. Li. Hartmann-Shack wavefront sensing and wavefront control algorithm. SPIE, 1271: 8293( 1990).

Google Scholar

[12] M. Stangalini, D. D. Moro, F. Berrilli, O. Lühe. Zernike basis optimization for solar adaptive optics by using information theory. (2010).

DOI: 10.1364/ao.49.002090

Google Scholar

[13] R. J. Noll. Zernike polynomials and atmospheric turbulence. (1976).

Google Scholar

[14] B. Schölkopf, A. Smola, K. R. Müller. Nonlinear component analysisas a kernel eigenvalue problem. (1998).

Google Scholar

[15] S. Saitoh. Theory of reproducing Kernels and its Applications. Longman Scientific & Technical, Harlow, England (1988).

Google Scholar

[16] B. Schölkopf. Support vector learning. Oldenbourg Verlag, Munich, (1997).

Google Scholar