The Strong Convergence of a New Iterative Algorithm for Asymptotically Nonexpansive Mappings

Article Preview

Abstract:

In a real Banach space E with a uniformly differentiable norm, we prove that a new iterative sequence converges strongly to a fixed point of an asymptotically nonexpansive mapping. The results in this paper improve and extend some recent results of other authors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

3628-3633

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math . Soc., vol. 73, pp.957-961, (1967).

DOI: 10.1090/s0002-9904-1967-11864-0

Google Scholar

[2] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. , vol. 2, pp.240-256, (2002).

Google Scholar

[3] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mapping in Banach spaes, Proc. Amer. Math. Soc., vol. 125, pp.3641-3645, (1997).

DOI: 10.1090/s0002-9939-97-04033-1

Google Scholar

[4] C. E. Chidume, C . O . Chidume, Iterative approximation of fixed points of nonexpansive mappings, J. Math. Anal. Appl. Vol. 318, pp.288-295.

DOI: 10.1016/j.jmaa.2005.05.023

Google Scholar

[5] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, , J. Math . Anal . Appl . vol. 298, pp.279-291, (2004).

Google Scholar