[1]
Tandom G,Chan P.Learning Useful System Call Attributes for Anomaly Detection[A].In: Proc 18th Intl FLAIRS Conf,2005.
Google Scholar
[2]
Amoroso, E.: Intrusion detection: an introduction to internet surveillance, correlation, trace back, traps, and response, 1st edn. Intrusion NetBooks , 1999, pp.24-27.
Google Scholar
[3]
GhasemiGol, M., Monsefi, R., Sadoghi-Yazdi, H.: Ellipse Support Vector Data Description. EANN 2009, Springer, CCIS 43, p.257–268 (2009).
DOI: 10.1007/978-3-642-03969-0_24
Google Scholar
[4]
Article in a journal.
Google Scholar
[5]
Banerjee A,Burlina P,Diehl C.A support vector method for anomaly detection in hyperspectral imagery.IEEE Transactions on geoscience and remote sensing,2008,44(8): 2282-2291.
DOI: 10.1109/tgrs.2006.873019
Google Scholar
[6]
Article in a conference proceedings.
Google Scholar
[7]
Agarwal C (2005) An empirical bayes approach to detect anomalies in dynamic multidimen-sionalarrays. In: Proceedings of the 5th IEEE international conference on data mining. IEEE Computer Society, Washington, DC, USA, p.26–33.
DOI: 10.1109/icdm.2005.22
Google Scholar
[8]
Liu, Y., Gururajan, S., Cukic, B., Menzies, T., Napolitano, M.: Validating an online adaptive system using SVDD. In: Proceedings of the 15th IEEE international conference on tools with artificial intelligence (ICTAI'03), p.384–388. Sacramento, California, USA, 3–5 Nov (2003).
DOI: 10.1109/tai.2003.1250215
Google Scholar
[9]
Parmer Gabriel,West Richard,Hijack:Taking Control of COTS Systems for Real-Time User-Level Services.In:Proceedings of 13th IEEE on Real Time and Embedded Technology and Applications Symposium.April 2007,133-146.
DOI: 10.1109/rtas.2007.14
Google Scholar
[10]
Ji, R., Liu, D., Wu, M., Liu, J.: The application of SVDD in gene expression data clustering. In: Proceedings of the 2nd international conference on bioinformatics and biomedical engineering (ICBBE'08), p.371–374. Shanghai, China, 16–18 May (2008).
DOI: 10.1109/icbbe.2008.94
Google Scholar