An H_Infinity Approach to Synchronization of Chaotic Systems

Article Preview

Abstract:

In this paper, a new adaptive approach for H_infinity synchronization of a general class of chaotic systems. Based on adaptive control theory and Lyapunov function method, An adaptive controller is constructed, the H_infinity synchronization controller is presented to not only guarantee stable synchronization but also reduce the effect of external disturbance to an H_infinity norm constraint. The results of simulation are given to show effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

3874-3878

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Alexander, Fradkov, J. Robin. Control of chaos: Methods and applications in engineering : Annual Reviews in Control, Vol. 29 (2005), p.33–56.

DOI: 10.1016/j.arcontrol.2005.01.001

Google Scholar

[2] S. H. Chen, J. A. Lu, Chaotic dynamics preliminary, Wuhan water conservancy and hydropower university press. (1999).

Google Scholar

[3] L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems: Phys Rev Lett, Vol. 64 (1990), p.821–824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[4] X. P. Guan,Z. P. Fan. Chaos control and its application in secret communication: Defense industry press, (2002).

Google Scholar

[5] H. N. Agiza , M. T. Yassen, Synchronization of Rossler and Chen chaotic dynamical systems using active control: Phys. Lett. A, Vol. 278 (2001), pp.191-197.

DOI: 10.1016/s0375-9601(00)00777-5

Google Scholar

[6] P. Parmananda. Synchronization using linear and nonlinear feedbacks: a comparison: Phys. Lett. A, Vol. 240 (1998), pp.55-59.

DOI: 10.1016/s0375-9601(98)00039-5

Google Scholar

[7] M. Chen, Z. Han. Controlling and synchronizing chaotic Genesio system via nonlinear feedback control: Chaos, Solitons & Fractals , Vol. 17 (2003). p.709–716.

DOI: 10.1016/s0960-0779(02)00487-3

Google Scholar

[8] P. Celka. Chaotic synchronization and modulation of nonlinear time delayed feedback optical systems: IEEE Trans. Circuits and Systems, Vol. 42 (1995), pp.455-463.

DOI: 10.1109/81.404049

Google Scholar

[9] C. Masoller. Anticipation in the synchronization of chaotic time delay systems: Physica A, Vol. 295, (2001), pp.301-304.

DOI: 10.1016/s0378-4371(01)00092-9

Google Scholar

[10] J. Yao, Z. H. Guan, and J. H. David. Adaptive switching control and Synchronization of a class of Nonlinear Systems: 43rd IEEE Conference on Decision and Control, (2004).

DOI: 10.1109/cdc.2004.1430352

Google Scholar

[11] M.T. Yassen. Adaptive chaos control and synchronization for uncertain new chaotic dynamical system: Physics Letters A, Vol. 350, (2006), p.36–43.

DOI: 10.1016/j.physleta.2005.09.076

Google Scholar

[12] C. Wang, S. Ge. Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos Solitons & Fractals , Vol. 12 (2001), p.199–1206.

DOI: 10.1016/s0960-0779(00)00089-8

Google Scholar

[13] J. H. Park. Synchronization of Gnesio chaotic system via backstepping approach: Chaos Solitons & Fractals, Vol. 27 (2006), p.1369–1375.

DOI: 10.1016/j.chaos.2005.05.001

Google Scholar

[14] A. Khadra, X. Liu, and X. Shen. Application of impulsive synchronization to communication security: IEEE Trans. On Circuits and Systems, Vol. 50 (2003), pp.341-350.

DOI: 10.1109/tcsi.2003.808839

Google Scholar

[15] L. Du, F. Wang, J. Liu, R. Pan. Adaptive Modified Projective Synchronization Between Genesio and Rossler Chaotic Systems with Uncertainties: Advanced Materials Research, Vol. 546-547 (2012). pp.1040-1044.

DOI: 10.4028/www.scientific.net/amr.546-547.1040

Google Scholar