An Interval Type-2 Fuzzy Cellular Automaton Model for Traffic Flow

Article Preview

Abstract:

On the basis of Nagel-Schreckenberg model, this paper presents a modified fuzzy cellular automaton model for one-lane highway traffic. An interval type-2 fuzzy logic system is designed to evaluate the randomization parameter of a vehicle based on the spatial headway and speed difference. Some basic qualitative results and the fundamental diagram of our new model are got through computer numerical simulations. The experimental results show that our new model is able to reproduce some of the real macroscopic traffic characteristics such as stop-and-go waves, hysteresis and metastability phenomena.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

4423-4428

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Lighthill, G. B. Whitham, On kinematic waves: a theory of traffic flow on long crowed roads, Proc. Roy. Soc. London, vol. 229, pp.317-345, (1955).

DOI: 10.1098/rspa.1955.0089

Google Scholar

[2] C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transpn. Res. B, vol. 29, pp.277-286, (1995).

DOI: 10.1016/0191-2615(95)00007-z

Google Scholar

[3] L. A. Pipes, An operational analysis of traffic dynamics, J. Appl. Phys., vol. 24, pp.274-281, (1953).

Google Scholar

[4] M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Phys. Rev. E, vol. 62, pp.1805-1824, (2000).

DOI: 10.1103/physreve.62.1805

Google Scholar

[5] I. Prigogine, R. Herman, Kinetic theory of vehicular traffic, American Elsevier, New York, pp.17-54, (1971).

Google Scholar

[6] S. L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis, Transpn. Res. B, vol. 9, pp.225-235, (1975).

DOI: 10.1016/0041-1647(75)90063-5

Google Scholar

[7] B. Jia, Z. Y. Gao, K. P. Li, Models and Simulations of Traffic System Based on the Theory of Cellular Automaton. Science Press, Beijing, (2007).

Google Scholar

[8] K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. (I), vol. 2, pp.2221-2229, (1992).

DOI: 10.1051/jp1:1992277

Google Scholar

[9] S. Wolfram, Theory and Applications of Cellular Automata, World Scientific, Singapore, pp.485-557, (1986).

Google Scholar

[10] M. Takayasu, H. Takayasu, 1/f noise in a traffic model, Fractals, vol. 1, pp.860-866, (1993).

DOI: 10.1142/s0218348x93000885

Google Scholar

[11] S. C. Benjamin, N. F. Johnson, P. M. Hui, Cellular automata models of traffic flow along a highway containing a junction, J. Phys. A: Math. & Gen., vol. 29, pp.3119-3127, (1996).

DOI: 10.1088/0305-4470/29/12/018

Google Scholar

[12] R. Barlovic, L. Santen, A. Schadschneider, Metastable states in cellular automata for traffic flow, Eur. Phys. J. B, vol. 5, pp.793-800, (1998).

DOI: 10.1007/s100510050504

Google Scholar

[13] X. B. Li, Q. S. Wu, R. Jiang, Cellular automaton model considering the velocity effect of a car on the successive car, Phys. Rev. E, vol. 64, p.066128(1-4), (2001).

DOI: 10.1103/physreve.64.066128

Google Scholar

[14] X. J. Kong, Z. Y. Gao, K. P. Li, A two-lane cellular automata model with influence of next-nearest neighbor vehicle, Commun. Theor. Phys., vol. 45, pp.657-662, (2006).

DOI: 10.1088/0253-6102/45/4/018

Google Scholar

[15] L. J. Peng, R. Kang, One-dimensional cellular automaton model of traffic flow considering drivers' features, Acta Phys. Sin., vol. 58, pp.830-835, (2009).

DOI: 10.7498/aps.58.830

Google Scholar

[16] J. X. Ding, H. J. Huang, T. Q. Tang, A cellular automaton model of traffic considering the dynamic evolution of velocity randomization probability, Acta Phys. Sin., vol. 58, pp.7591-7595, (2009).

DOI: 10.7498/aps.58.7591

Google Scholar

[17] Z. H. Lv, H. Jin, P. P. Yuan, The theory of triangle type-2 fuzzy sets, Ninth IEEE International Conference on Computer and Information Technology(CIT 09), IEEE Press, Oct. 2009, pp.57-62.

DOI: 10.1109/cit.2009.79

Google Scholar

[18] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-1, Inf. Sci., vol. 8, pp.199-249, (1975).

DOI: 10.1016/0020-0255(75)90036-5

Google Scholar