[1]
M. J. Lighthill, G. B. Whitham, On kinematic waves: a theory of traffic flow on long crowed roads, Proc. Roy. Soc. London, vol. 229, pp.317-345, (1955).
DOI: 10.1098/rspa.1955.0089
Google Scholar
[2]
C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transpn. Res. B, vol. 29, pp.277-286, (1995).
DOI: 10.1016/0191-2615(95)00007-z
Google Scholar
[3]
L. A. Pipes, An operational analysis of traffic dynamics, J. Appl. Phys., vol. 24, pp.274-281, (1953).
Google Scholar
[4]
M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Phys. Rev. E, vol. 62, pp.1805-1824, (2000).
DOI: 10.1103/physreve.62.1805
Google Scholar
[5]
I. Prigogine, R. Herman, Kinetic theory of vehicular traffic, American Elsevier, New York, pp.17-54, (1971).
Google Scholar
[6]
S. L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis, Transpn. Res. B, vol. 9, pp.225-235, (1975).
DOI: 10.1016/0041-1647(75)90063-5
Google Scholar
[7]
B. Jia, Z. Y. Gao, K. P. Li, Models and Simulations of Traffic System Based on the Theory of Cellular Automaton. Science Press, Beijing, (2007).
Google Scholar
[8]
K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. (I), vol. 2, pp.2221-2229, (1992).
DOI: 10.1051/jp1:1992277
Google Scholar
[9]
S. Wolfram, Theory and Applications of Cellular Automata, World Scientific, Singapore, pp.485-557, (1986).
Google Scholar
[10]
M. Takayasu, H. Takayasu, 1/f noise in a traffic model, Fractals, vol. 1, pp.860-866, (1993).
DOI: 10.1142/s0218348x93000885
Google Scholar
[11]
S. C. Benjamin, N. F. Johnson, P. M. Hui, Cellular automata models of traffic flow along a highway containing a junction, J. Phys. A: Math. & Gen., vol. 29, pp.3119-3127, (1996).
DOI: 10.1088/0305-4470/29/12/018
Google Scholar
[12]
R. Barlovic, L. Santen, A. Schadschneider, Metastable states in cellular automata for traffic flow, Eur. Phys. J. B, vol. 5, pp.793-800, (1998).
DOI: 10.1007/s100510050504
Google Scholar
[13]
X. B. Li, Q. S. Wu, R. Jiang, Cellular automaton model considering the velocity effect of a car on the successive car, Phys. Rev. E, vol. 64, p.066128(1-4), (2001).
DOI: 10.1103/physreve.64.066128
Google Scholar
[14]
X. J. Kong, Z. Y. Gao, K. P. Li, A two-lane cellular automata model with influence of next-nearest neighbor vehicle, Commun. Theor. Phys., vol. 45, pp.657-662, (2006).
DOI: 10.1088/0253-6102/45/4/018
Google Scholar
[15]
L. J. Peng, R. Kang, One-dimensional cellular automaton model of traffic flow considering drivers' features, Acta Phys. Sin., vol. 58, pp.830-835, (2009).
DOI: 10.7498/aps.58.830
Google Scholar
[16]
J. X. Ding, H. J. Huang, T. Q. Tang, A cellular automaton model of traffic considering the dynamic evolution of velocity randomization probability, Acta Phys. Sin., vol. 58, pp.7591-7595, (2009).
DOI: 10.7498/aps.58.7591
Google Scholar
[17]
Z. H. Lv, H. Jin, P. P. Yuan, The theory of triangle type-2 fuzzy sets, Ninth IEEE International Conference on Computer and Information Technology(CIT 09), IEEE Press, Oct. 2009, pp.57-62.
DOI: 10.1109/cit.2009.79
Google Scholar
[18]
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-1, Inf. Sci., vol. 8, pp.199-249, (1975).
DOI: 10.1016/0020-0255(75)90036-5
Google Scholar