Blind Signal Detection for Uniform Rectangular Array via Compressive Sensing Trilinear Model

Article Preview

Abstract:

This paper discusses the signal detection problem with rectangular array, and links the detection problem to the compressed sensing trilinear model. Exploiting this link, we derive a compressed sensing trilinear decomposition-based signal detection algorithm, which can obtain the estimation of the signals from different directions. The proposed algorithm requires no spectral peak searching, and it has lower complexity than conventional trilinear decomposition-based method. Simulation results illustrate the performance of the algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

660-664

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Haykin S. Unsupervised Adaptive Filtering, Vol I: Blind Souse Separation. New York: Wiley, (2000).

Google Scholar

[2] IHM B C, PARK D J. Blind separation of sources using higher-order cumulants. Signal Processing, 73(1999), 267-276.

DOI: 10.1016/s0165-1684(98)00197-2

Google Scholar

[3] L. Parra and C. Spence, Convolutive blind separation for non-stationary sources, IEEE Trans. Speech Audio Process., 6(2000) 3, 320–327.

DOI: 10.1109/89.841214

Google Scholar

[4] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, and E. Moulines, A blind source. separation technique using second-order statistics, IEEE Trans. Signal Processing, 45(1997) 2, 434-444.

DOI: 10.1109/78.554307

Google Scholar

[5] D. W. E. Schobben and P. W. Sommen, A frequency domain blind signal separation method based on decorrelation, IEEE Trans. Signal Process., 50(2002) 8, 1855–1865.

DOI: 10.1109/tsp.2002.800417

Google Scholar

[6] H. Buchner, R. Aichner, and W. Kellermann, A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics, IEEE Trans. Speech Audio Process., 13, (2004) 1, 120–134.

DOI: 10.1109/tsa.2004.838775

Google Scholar

[7] N. Grbic, X. -J. Tao, S. Nordholm, and I. Claesson, Blind signal separation using overcomplete subband representation, IEEE Trans. Speech Audio Process., 9(2001) 5, 524–533.

DOI: 10.1109/89.928917

Google Scholar

[8] Xiaofei Zhang; Dazhuan Xu, Blind signal separation of linear mixture using trilinear decomposition, Journal: Journal of Electronics (China) , Volume: 26 Issue: 5 (2009-09) Page: 608-613.

DOI: 10.1007/s11767-008-0010-2

Google Scholar

[9] Zhang Xiaofei, Huang Xizhu, Xu Dazhuan. Blind PARAFAC Signal Detection for Uniform Circular Array with Polarization Sensitive Antennas. Transactions of Nanjing University of Aeronautics & Astronautic, 23(2006) 4, 291-296.

Google Scholar

[10] J. B. Kruskal, Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Applicat., 18(1977), 95–138.

DOI: 10.1016/0024-3795(77)90069-6

Google Scholar

[11] R. Bro, N. D. Sidiropoulos, and G. B. Giannakis, A fast least squares algorithm for separating trilinear mixtures, in Proc. Inter. Workshop ICA and BSS, France, Jan. 1999, p.289–294.

Google Scholar

[12] S. J. Kim, K. Koh, M. Lustig, et. al, An Interior-Point Method for Large-Scale l1-Regularized Least Squares, IEEE Journal of selected topics in Signal Processing, vol. 1, no. 4, pp.606-617, Dec. (2007).

DOI: 10.1109/jstsp.2007.910971

Google Scholar