Recursive Backstepping Nonlinear Control and Sliding Mode Control of a Novel Hyperchaotic Finance System

Article Preview

Abstract:

In this paper, the recursive backstepping nonlinear control method is proposed. Based on the Lyapunov theory, the controllers are designed to achieve the new hyperchaotic system globally, asymptotically stabilized at the equilibrium point. Furthermore, a robust control method combining backstepping and sliding mode control techniques is used to control the system to another equilibrium point. Numerical simulation results show that the proposed control schemes are effective.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

775-780

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.C. Trevor, A. Katie, M. Peter, Using argumentation to model agent decision making in economic experiments, Autonomous Agents and Multi-agent Systems, vol. 25, pp.154-167, (2012).

DOI: 10.1007/s10458-011-9173-6

Google Scholar

[2] G.L. Cai, H.J. Yu, Y.X. Li, Localization of compact invariant sets of a modified nonlinear finance chaotic system, Nonlinear Dyn., vol. 69, pp.2269-2275, (2012).

DOI: 10.1007/s11071-012-0425-z

Google Scholar

[3] M.Z. Yang, G.L. Cai, Chaos Control of a Non-linear Finance System, J. Uncertain Syst., vol. 5, pp.263-270, (2011).

Google Scholar

[4] D. Sara, M. H. Reza, Control of a fractional-order economical system via sliding mode, Physica A, vol. 389, pp.2434-2442, (2010).

DOI: 10.1016/j.physa.2010.02.025

Google Scholar

[5] G.L. Cai, M.Z. Yang, Globally exponentially attractive set and synchronization of a novel three-dimensional chaotic finance system, Proc. Third Inter. Conf. Inform. Comp. Sci. 2010, 2, pp.70-73.

DOI: 10.1109/icic.2010.111

Google Scholar

[6] H.J. Yu, G.L. Cai, Y.X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dyn., vol. 67, pp.2171-2182, (2012).

DOI: 10.1007/s11071-011-0137-9

Google Scholar

[7] G.L. Cai, P. Hu, Y.X. Li, Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dyn., vol. 69, pp.1457-1464, (2012).

DOI: 10.1007/s11071-012-0361-y

Google Scholar

[8] J.H. Park, Synchronization of Genesio chaotic system via backstepping approach, Chaos Solitons Fractal, vol. 27, pp.1369-1375, (2006).

DOI: 10.1016/j.chaos.2005.05.001

Google Scholar

[9] G.H. Li, S.P. Zhou, K. Yang, Generalized projective synchronization between two different chaotic systems using active backstepping control, Phys. Lett. A, vol. 355, pp.326-330, (2006).

DOI: 10.1016/j.physleta.2006.02.049

Google Scholar