Recent Progress in Human Face Detection, Tracking and Recognition

Article Preview

Abstract:

Facial recognition is an important research topic in biometrics and has wide applications in pattern recognition and computer vision. This paper aims at providing interested readers with recent progresses in human face detection, tracking, video-based face recognition, and 3D+2D hybrid face recognition. For this purpose, it mainly focuses on those state-of-the-arts methods and technologies that emerged in recent previous few years. Most existing methods in this area are still-image based which do not utilize motion information; whereas most video-based methods work only in 2D video sequences, which are subject to pose and illumination variations. The recent emergence of 3D video cameras capable of producing range image sequences and corresponding texture image sequences simultaneously allows for the possibility of facial recognition in a 3D+2D video-based scenario. In view of this fact, a scheme of face detection, tracking and recognition process in 3D video-based manner is also proposed in this paper with further concerns addressed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

1539-1546

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. W. Bowyer, K. Chang, P. Flynn, A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition, Computer Vision and Image Understanding, vol. 101, 2006, pp.1-15.

DOI: 10.1016/j.cviu.2005.05.005

Google Scholar

[2] R. Chellappa, M. Du, P. Turaga, S. K. Zhou, Face tracking and recognition in video, in Handbook of Face Recognition (2nd Edition), Stan Z. Li, Anil K. Jain (Eds), pp.323-351, Springer, (2011).

DOI: 10.1007/978-0-85729-932-1_13

Google Scholar

[3] pi_face_tracker, http: /www. ros. org/wiki/pi_face_tracker, Jan 20, (2012).

Google Scholar

[4] Is Microsoft's Kinect Racist?, http: /www. pcworld. com/article/209708/ is_microsofts_kinect_racist. html, Nov 4, (2010).

Google Scholar

[5] P. Grother, G.W. Quinn, P. J. Phillips, Multiple-biometric evaluation (MBE) 2010—report on the evaluation of 2d still-image face recognition algorithms, NIST Interagency Report 7709, National Institute of Standards and Technology, Aug, (2011).

DOI: 10.6028/nist.ir.7709

Google Scholar

[6] N. Pinto, D. Cox, Beyond simple features: a large-scale feature search approach to unconstrained face recognition, in 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), Mar 2011, pp.8-15.

DOI: 10.1109/fg.2011.5771385

Google Scholar

[7] P. Viola, M. J. Jones, Robust real-time face detection, International Journal of Computer Vision, vol. 57(2), 2004, pp.137-154.

DOI: 10.1023/b:visi.0000013087.49260.fb

Google Scholar

[8] C. Zhang, Z. Zhang, A Survey of Recent Advances in Face Detection, Technical Report MSR-TR-2010-66, Jun (2010).

Google Scholar

[9] J. Wu, S. C. Brubaker, M. D. Mullin, J. M. Rehg, Fast asymmetric learning for cascade face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, 2008, pp.369-382.

DOI: 10.1109/tpami.2007.1181

Google Scholar

[10] S. Z. Li, Z. Zhang, FloatBoost learning and statistical face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, 2004, pp.1112-1123.

DOI: 10.1109/tpami.2004.68

Google Scholar

[11] C. Huang, H. Ai, Y. Li, S. Lao, High-performance rotation invariant multiview face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, 2007, pp.671-686.

DOI: 10.1109/tpami.2007.1011

Google Scholar

[12] R. Gopalan, W. Schwartz, R. Chellappa, A. Srivastava, Face detection, in A Guide to Visual Analysis of Humans: Looking at People, T. Moeslund et al. (Eds), pp.71-90, Springer (2011).

DOI: 10.1007/978-0-85729-997-0_5

Google Scholar

[13] F. F. Li, R. Fergus, A. Torralba, Recognizing and learning object categories, in Short Course at International Conference on Computer Vision (September 2009).

Google Scholar

[14] S. Savarese, J. Winn, A. Criminisi, Discriminative Object Class Models of Appearance and Shape by Correlatons, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006), 2006, p.2033-(2040).

DOI: 10.1109/cvpr.2006.102

Google Scholar

[15] M. Bohme, M. Haker, K. Riemer, et al., Face Detection Using a Time-of-Flight Camera, LNCS, vol. 5742, 2009, pp.167-176.

Google Scholar

[16] L. Xia, C. -C. Chen, J. K. Aggarwal, Human Detection Using Depth Information by Kinect, in International Workshop on Human Activity Understanding from 3D Data in conjunction with CVPR (HAU3D), Jun. 2011, pp.15-22.

DOI: 10.1109/cvprw.2011.5981811

Google Scholar

[17] G. Fanelli, T. Weise, J. Gall and L. Van Gool, Real Time Head Pose Estimation from Consumer Depth Cameras, " in 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM, 11), 2011, pp.101-110.

DOI: 10.1007/978-3-642-23123-0_11

Google Scholar

[18] M. Zhou, L. Liang, J. Sun, Y. Wang, AAM based Face Tracking with Temporal Matching and Face Segmentation, in CVPR 2010, Jun. 2010, pp.701-708.

DOI: 10.1109/cvpr.2010.5540146

Google Scholar

[19] Q. Cai, D. Gallup, C. Zhang and Z. Zhang, 3D Deformable Face Tracking with a Commodity Depth Camera, in ECCV 2010, Sep. 2010, pp.229-242.

DOI: 10.1007/978-3-642-15558-1_17

Google Scholar

[20] P. Phothisane, E. Bigorgne, L. Collot, L. Prevost, A robust composite metric for head pose tracking using an accurate face model, in 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), Mar. 2011, pp.694-699.

DOI: 10.1109/fg.2011.5771332

Google Scholar

[21] T. Weise, S. Bouaziz, H. Li, M. Pauly, Realtime performance-based facial animation, ACM Transactions on Graphics, vol. 30, 2011, pp.1-9.

DOI: 10.1145/2010324.1964972

Google Scholar

[22] D. Ross, J. Lim, R. -S. Lin, M. -H. Yang, Incremental learning for robust visual tracking, International Journal of Computer Vision, vol. 77, 2007, pp.125-141.

DOI: 10.1007/s11263-007-0075-7

Google Scholar

[23] M. Kim, S. Kumar, V. Pavlovic, H. Rowley, Face Tracking and Recognition with Visual Constraints in Real-World Videos, in CVPR 2008, Jun. 2008, pp.1-8.

DOI: 10.1109/cvpr.2008.4587572

Google Scholar

[24] S. Zafeiriou, G. Tzimiropoulos, M. Pantic, Subspace analysis of arbitrarily many linear filter responses with an application to face tracking, in CVPRW 2011, Jun. 2011, pp.37-42.

DOI: 10.1109/cvprw.2011.5981738

Google Scholar

[25] S. K. Zhou, R. Chellappa, From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel Hilbert space, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, 2006, 917-929.

DOI: 10.1109/tpami.2006.120

Google Scholar

[26] L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched background similarity, in CVPR 2011, 2011, pp.529-534.

DOI: 10.1109/cvpr.2011.5995566

Google Scholar

[27] O. Arandjelovic, R. Cipolla, Face recognition from video using the generic shape-illumination manifold, in ECCV 2006, 2006, pp.27-40.

DOI: 10.1007/11744085_3

Google Scholar