[1]
K. W. Bowyer, K. Chang, P. Flynn, A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition, Computer Vision and Image Understanding, vol. 101, 2006, pp.1-15.
DOI: 10.1016/j.cviu.2005.05.005
Google Scholar
[2]
R. Chellappa, M. Du, P. Turaga, S. K. Zhou, Face tracking and recognition in video, in Handbook of Face Recognition (2nd Edition), Stan Z. Li, Anil K. Jain (Eds), pp.323-351, Springer, (2011).
DOI: 10.1007/978-0-85729-932-1_13
Google Scholar
[3]
pi_face_tracker, http: /www. ros. org/wiki/pi_face_tracker, Jan 20, (2012).
Google Scholar
[4]
Is Microsoft's Kinect Racist?, http: /www. pcworld. com/article/209708/ is_microsofts_kinect_racist. html, Nov 4, (2010).
Google Scholar
[5]
P. Grother, G.W. Quinn, P. J. Phillips, Multiple-biometric evaluation (MBE) 2010—report on the evaluation of 2d still-image face recognition algorithms, NIST Interagency Report 7709, National Institute of Standards and Technology, Aug, (2011).
DOI: 10.6028/nist.ir.7709
Google Scholar
[6]
N. Pinto, D. Cox, Beyond simple features: a large-scale feature search approach to unconstrained face recognition, in 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), Mar 2011, pp.8-15.
DOI: 10.1109/fg.2011.5771385
Google Scholar
[7]
P. Viola, M. J. Jones, Robust real-time face detection, International Journal of Computer Vision, vol. 57(2), 2004, pp.137-154.
DOI: 10.1023/b:visi.0000013087.49260.fb
Google Scholar
[8]
C. Zhang, Z. Zhang, A Survey of Recent Advances in Face Detection, Technical Report MSR-TR-2010-66, Jun (2010).
Google Scholar
[9]
J. Wu, S. C. Brubaker, M. D. Mullin, J. M. Rehg, Fast asymmetric learning for cascade face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, 2008, pp.369-382.
DOI: 10.1109/tpami.2007.1181
Google Scholar
[10]
S. Z. Li, Z. Zhang, FloatBoost learning and statistical face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, 2004, pp.1112-1123.
DOI: 10.1109/tpami.2004.68
Google Scholar
[11]
C. Huang, H. Ai, Y. Li, S. Lao, High-performance rotation invariant multiview face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, 2007, pp.671-686.
DOI: 10.1109/tpami.2007.1011
Google Scholar
[12]
R. Gopalan, W. Schwartz, R. Chellappa, A. Srivastava, Face detection, in A Guide to Visual Analysis of Humans: Looking at People, T. Moeslund et al. (Eds), pp.71-90, Springer (2011).
DOI: 10.1007/978-0-85729-997-0_5
Google Scholar
[13]
F. F. Li, R. Fergus, A. Torralba, Recognizing and learning object categories, in Short Course at International Conference on Computer Vision (September 2009).
Google Scholar
[14]
S. Savarese, J. Winn, A. Criminisi, Discriminative Object Class Models of Appearance and Shape by Correlatons, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006), 2006, p.2033-(2040).
DOI: 10.1109/cvpr.2006.102
Google Scholar
[15]
M. Bohme, M. Haker, K. Riemer, et al., Face Detection Using a Time-of-Flight Camera, LNCS, vol. 5742, 2009, pp.167-176.
Google Scholar
[16]
L. Xia, C. -C. Chen, J. K. Aggarwal, Human Detection Using Depth Information by Kinect, in International Workshop on Human Activity Understanding from 3D Data in conjunction with CVPR (HAU3D), Jun. 2011, pp.15-22.
DOI: 10.1109/cvprw.2011.5981811
Google Scholar
[17]
G. Fanelli, T. Weise, J. Gall and L. Van Gool, Real Time Head Pose Estimation from Consumer Depth Cameras, " in 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM, 11), 2011, pp.101-110.
DOI: 10.1007/978-3-642-23123-0_11
Google Scholar
[18]
M. Zhou, L. Liang, J. Sun, Y. Wang, AAM based Face Tracking with Temporal Matching and Face Segmentation, in CVPR 2010, Jun. 2010, pp.701-708.
DOI: 10.1109/cvpr.2010.5540146
Google Scholar
[19]
Q. Cai, D. Gallup, C. Zhang and Z. Zhang, 3D Deformable Face Tracking with a Commodity Depth Camera, in ECCV 2010, Sep. 2010, pp.229-242.
DOI: 10.1007/978-3-642-15558-1_17
Google Scholar
[20]
P. Phothisane, E. Bigorgne, L. Collot, L. Prevost, A robust composite metric for head pose tracking using an accurate face model, in 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), Mar. 2011, pp.694-699.
DOI: 10.1109/fg.2011.5771332
Google Scholar
[21]
T. Weise, S. Bouaziz, H. Li, M. Pauly, Realtime performance-based facial animation, ACM Transactions on Graphics, vol. 30, 2011, pp.1-9.
DOI: 10.1145/2010324.1964972
Google Scholar
[22]
D. Ross, J. Lim, R. -S. Lin, M. -H. Yang, Incremental learning for robust visual tracking, International Journal of Computer Vision, vol. 77, 2007, pp.125-141.
DOI: 10.1007/s11263-007-0075-7
Google Scholar
[23]
M. Kim, S. Kumar, V. Pavlovic, H. Rowley, Face Tracking and Recognition with Visual Constraints in Real-World Videos, in CVPR 2008, Jun. 2008, pp.1-8.
DOI: 10.1109/cvpr.2008.4587572
Google Scholar
[24]
S. Zafeiriou, G. Tzimiropoulos, M. Pantic, Subspace analysis of arbitrarily many linear filter responses with an application to face tracking, in CVPRW 2011, Jun. 2011, pp.37-42.
DOI: 10.1109/cvprw.2011.5981738
Google Scholar
[25]
S. K. Zhou, R. Chellappa, From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel Hilbert space, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, 2006, 917-929.
DOI: 10.1109/tpami.2006.120
Google Scholar
[26]
L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched background similarity, in CVPR 2011, 2011, pp.529-534.
DOI: 10.1109/cvpr.2011.5995566
Google Scholar
[27]
O. Arandjelovic, R. Cipolla, Face recognition from video using the generic shape-illumination manifold, in ECCV 2006, 2006, pp.27-40.
DOI: 10.1007/11744085_3
Google Scholar