Study and Simulation on Turbulent Atmosphere Modeled by Gamma-Gamma Distributions

Article Preview

Abstract:

Gamma-Gamma distribution model is widely used in studying the impact of the atmospheric turbulence on the Free Space Optical communication systems. This study introduces the Gamma-Gamma distribution model, simulates and studies the spot changes over distance, wavelength, turbulence structure constant and transmit aperture, respectively. Finally, the simulation results show that the Gamma-Gamma distribution is more suitable for middle-strong turbulence than weak turbulence.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

204-208

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. O. Popoola, Z. Ghassemlooy, V. Ahmadi. Performance of subcarrier modulated free-space optical communication link in negative exponential atmospheric turbulence environment. International Journal of Autonomous and Adaptive Communications Systems, 1(3), pp.342-355, (2008).

DOI: 10.1504/ijaacs.2008.019809

Google Scholar

[2] M. Uysal, J. Li, M. Yu. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Transactions on Wireless Comunication, 5(6), pp.1229-1233, (2006).

DOI: 10.1109/twc.2006.1638639

Google Scholar

[3] K. Kiasaleh. Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence. IEEE Transactions on Comunication, 54(4), pp.604-607, (2006).

DOI: 10.1109/tcomm.2006.873067

Google Scholar

[4] L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash. Theory of optical scintillation. Journal of Optical Society America A, 16(6), pp.1417-1429, (1999).

DOI: 10.1364/josaa.16.001417

Google Scholar

[5] L. C. Andrews, R. L. Phillips, and C.Y. Hopen. Aperture averaging of optical scintillations: Power fluctuations and the temporal spectrum. Waves Random Media, vol. 10, pp.53-70, (2000).

DOI: 10.1088/0959-7174/10/1/305

Google Scholar

[6] M. A. Al-Habash, L.C. Andrews, and R. L. Phillips. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 40(8), pp.1554-1562, (2001).

DOI: 10.1117/1.1386641

Google Scholar

[7] W. Gappmair and M. Flohberger. Error performance of coded FSO links in turbulent atmosphere modeled by Gamma-Gamma distributions. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 8(5), pp.2209-2212, (2009).

DOI: 10.1109/twc.2009.080076

Google Scholar

[8] Z. Ghassemlooy, W.O. Popoola, and E. Leitgeb. free-space optical communication using subcarrier modulation in Gamma-Gamma atmospheric turbulence. 9th International Conference on Transparent Optical Networks, Rome Italy, pp: 156-160, July 1-5, (2007).

DOI: 10.1109/icton.2007.4296269

Google Scholar