[1]
M. Mackey, Unified hypothesis of the origin of aplastic anaemia and periodic hematopoesis. Blood , vol. 51, 1978, pp.942-956.
DOI: 10.1182/blood.v51.5.941.941
Google Scholar
[2]
L. Lajtha, On DNA labeling in the study of the dynamics of bone marrow cell populations. In: Stohlman, Jr., F. (Ed. ), The Kinetics of Cellular Proliferation. Grune and Stratton, New York, 1959, p.173–182.
Google Scholar
[3]
F. Burns and Tannock, I.F., 1970. On the existence of a phase in the cell cycle. Cell Tissue Kinet. , vol. 19, p.321–334.
Google Scholar
[4]
L. Pujo-Menjouet, and R. Rudnicki, Global stability of cellular populations with unequal division. Can. Appl. Math. Q. 8 (2), 2000, p.185–202.
DOI: 10.1216/camq/1032375042
Google Scholar
[5]
S. Bernard, J. Be' lair and M. Mackey, . Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol., vol. 223, 2003, p.283–298.
DOI: 10.1016/s0022-5193(03)00090-0
Google Scholar
[6]
S. Bernard, J. Be' lair and M. Mackey, Bifurcations in a white-bloodcell production model. C. R. Biol., vol. 327, 2004, p.201–210.
Google Scholar
[7]
M. Adimya, F. Craustea and S. Ruan , Periodic oscillations in leukopoiesis models with two delays. J. Theor. Biol., vol. 242, 2006, p.288–299.
DOI: 10.1016/j.jtbi.2006.02.020
Google Scholar
[8]
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal., vol. 33, 2002., p.1144–1165.
DOI: 10.1137/s0036141000376086
Google Scholar
[9]
J. Wei, S. Ruan, Stability and bifurcation in a neural network model with two delays. Physica D, vol. 130, 1999, p.255–272.
DOI: 10.1016/s0167-2789(99)00009-3
Google Scholar
[10]
S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., vol. 10, 2003, p.863–874.
Google Scholar
[11]
J. Hale, S. Verduyn Lunel, Introduction to functional differential equations. Applied Mathematical Sciences, vol. 99. 1993, Springer, New York.
Google Scholar