[1]
Au, W.H. and Chan, K.C. (2005). Mining changes in association rules: a fuzzy approach. Fuzzy Sets and Systems, 149(1): 87-104.
DOI: 10.1016/j.fss.2004.07.018
Google Scholar
[2]
Bay, S. D. and Pazzani, M. J. (1999). Detecting Change in Categorical Data: Mining Contrast Sets. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'99), pp.302-306.
DOI: 10.1145/312129.312263
Google Scholar
[3]
Bay, S. D. and Pazzani, M. J. (2000). Characterizing Model Erros and Differences. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), pp.49-56.
Google Scholar
[4]
Bay, S. D. and Pazzani, M. J. (2001). Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3): 213-246.
DOI: 10.1023/a:1011429418057
Google Scholar
[5]
Blake, C. and Merz, C. (1998). UCI Repository of machine learning database. [http: /www. ics. uci. edu/~mlearn/MLResoesitory. html].
Google Scholar
[6]
Chen, Rao and Sitter (2000). Efficient random imputations for missing data in complex surveys. Statistica Sinica, 10(4): 1153-1169.
Google Scholar
[7]
Cho, Y. B., Cho, Y. H. and Kim, S. H. (2005). Mining changes in customer buying behavior for collaborative recommendations. Expert Systems with Applications, 28(2): 359-369.
DOI: 10.1016/j.eswa.2004.10.015
Google Scholar
[8]
Cong, G. and Liu, B. (2002). Speed-up Iterative Frequent Itemset Mining with Constraint Changes. In: Proceedings of the International Conference on Data Mining (ICDM 2002), pp.107-114.
DOI: 10.1109/icdm.2002.1183892
Google Scholar
[9]
Hall, P. and Martin, M. (1988) On the bootstrap and two-sample problems. Austral. J. Statist, 30A, pp.179-192.
Google Scholar
[10]
Hartley, H. and Rao, J. (1968). A new estimation theory for sample surveys. Biometrika, 55: 547-557.
DOI: 10.1093/biomet/55.3.547
Google Scholar
[11]
Jing, B. Y. (1995). Two-sample empirical likelihood method. Statistics and Probability Letters, 24: 315-319.
DOI: 10.1016/0167-7152(94)00189-f
Google Scholar
[12]
Li, H. F., Lee, S. Y. and Shan, M. K. (2005). Online Mining Changes of Items over Continuous Append-only and Dynamic Data Streams. Journal of Universal Computer Science, 11(8): 1411-1425.
Google Scholar
[13]
Little, R. and Rubin, D. (2002). Statistical analysis with missing data. 2nd edition. John Wiley & Sons, New York.
Google Scholar
[14]
Liu, B., Hsu, W., Han, H. S. and Xia, Y. (2002). Mining Changes for Real-Life Applications. DaWaK 2000, pp.337-346.
Google Scholar
[15]
Qin, Y. S. and Zhao, L. C. (2000). Empirical likelihood ratio intervals for various differences of two populations. Systems Science and Mathematics Sciences (in Chinese), 13: 23-30.
Google Scholar
[16]
Owen, A. (2003). Data Squashing by Empirical Likelihood. Data Mining and Knowledge Discovery, 7(1): 101–113.
Google Scholar
[17]
Owen, A. (2001). Empirical likelihood. Chapman & Hall, New York.
Google Scholar
[18]
Rao, J. (1996). On variance estimation with imputed survey data. J. Amer. Statist. Assoc., 91: 499-520.
Google Scholar
[19]
Wang, K., Zhou, S. Q., Fu, A. W. C. and Yu, X. J. (2003). Mining Changes of Classification by Correspondence Tracing. In: SIAMDM'03, SIAM International Conference on Data Mining, May 1-3, San Francisco.
DOI: 10.1137/1.9781611972733.9
Google Scholar
[20]
Wang, Q. and Rao, J. (2002a). Empirical likelihood-based inference in linear models with missing data. Scand. J. Statist., 29: 563-576.
DOI: 10.1111/1467-9469.00306
Google Scholar
[21]
Wang, Q. and Rao, J. (2002b). Empirical likelihood-based inference under imputation for missing response data. Ann. Statist., 30: 896-924.
DOI: 10.1214/aos/1028674845
Google Scholar
[22]
Webb, G. I., Butler, S.M. and Newlands, D.A. (2003). On detecting differences between groups. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'03, pp.256-265.
DOI: 10.1145/956750.956781
Google Scholar
[23]
Ying, A. T., Murphy, G. C., Raymond, T. N. and Mark, C. C. (2004). Predicting Source Code Changes by Mining Change History. IEEE Trans. Software Eng., 30(9): 574-586.
DOI: 10.1109/tse.2004.52
Google Scholar