Parallel Computing of Laser Propulsion with Hypergraph Partitioning

Article Preview

Abstract:

As one of the most important methods to study laser propelled rocket, the numerical simulation of laser propulsion has drawn an ever increasing attention at present. Nevertheless, the traditional serial computing cannot satisfy the practical requirements because of high calculation precision, insatiable memory overhead and considerable computation time. In this paper, we study on a general algorithm for laser propulsion, and divide the computing domain by using a multilevel hypergraph partitioning algorithm. Furthermore, MPI allreduce, overlapping communication with computation and non blocking communication are adopted to decrease the communication time when dealing with global communication. Finally, parallel performance about two typical configurations on a China-made supercomputer shows the smallest value of speedup ratio is more than 123 when the number of processors is 256. In conclusion, our parallel method is effective and practical in numerical simulation of laser propulsion.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

311-314

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Kantmwitz. Astronautics and Aeronautics 10 (1972), p.74.

Google Scholar

[2] H. Horisawa, S. Sumida, H. Yonamine, and I. Funaki. Vacuum 88 (2013), pp.75-78.

Google Scholar

[3] B. Wang, K. Michigami, K. Komurasaki, and Y. Arakawa. Journal of Propulsion and Power 29 (2012), pp.276-278.

Google Scholar

[4] Y. Jamil, H. Saeed, M.R. Ahmad, S.A. Khan, H. Farooq, M. Shahid, K.M. Zia, and N. Amin. Applied Physics A 110 (2013), pp.207-210.

DOI: 10.1007/s00339-012-7115-z

Google Scholar

[5] A. Cevahir, A. Nukada, and S. Matsuoka. Computer Science-Research and Development 25 (2010), pp.83-91.

Google Scholar

[6] E. Fischer, A. Matsliah, and A. Shapira. SIAM Journal on Computing 39 (2010), pp.3155-3185.

Google Scholar

[7] U.V. Catalyurek, C. Aykanat, and E. Kayaaslan. SIAM Journal on Scientific Computing 33 (2011), p.1996-(2023).

Google Scholar

[8] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 7 (1999), pp.69-79.

DOI: 10.1109/92.748202

Google Scholar

[9] U.V. Catalyurek, M. Deveci, K. Kaya, and B. Ucar, Multithreaded clustering for multi-level hypergraph partitioning, Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, IEEE, 2012, pp.848-859.

DOI: 10.1109/ipdps.2012.81

Google Scholar

[10] U.V. Catalyurek, D. Bozdag, E.G. Boman, K.D. Devine, R. Heaphy, and L.A. Riesen. Advanced Computational Infrastructures for Parallel and Distributed Applications 66 (2010), pp.311-333.

DOI: 10.1002/9780470558027.ch15

Google Scholar

[11] A.R. Mamidala, D. Faraj, S. Kumar, D. Miller, M. Blocksome, T. Gooding, P. Heidelberger, and G. Dozsa, Optimizing MPI Collectives Using Efficient Intra-node Communication Techniques over the Blue Gene/P Supercomputer, Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, IEEE, 2011, pp.771-780.

DOI: 10.1109/ipdps.2011.220

Google Scholar

[12] V. Marjanovi, J. Labarta, E. Ayguade, and M. Valero, Overlapping communication and computation by using a hybrid MPI/SMPSs approach, Proceedings of the 24th ACM International Conference on Supercomputing, ACM, 2010, pp.5-16.

DOI: 10.1145/1810085.1810091

Google Scholar

[13] K. Kandalla, H. Subramoni, K. Tomko, D. Pekurovsky, S. Sur, and D.K. Panda. Computer Science-Research and Development 26 (2011), pp.237-246.

DOI: 10.1007/s00450-011-0170-4

Google Scholar