The Application of Non-Destructive Testing Based on Terahertz Technology in the Field of Smart Grid

Article Preview

Abstract:

The terahertz technology involves electromagnetics, semiconductor physics, optoelectronics, materials science and micro-processing technology and other disciplines. Based on terahertz technology, non-destructive testing has important research value and application prospect in the field of medical imaging, security checking, product testing and power system monitoring. The generation of terahertz technology and its advantages is described in this article, and an analysis is also given on the application of non-destructive testing based on terahertz technology in the field of smart grid such as cable accident warning, intelligent anti-theft system and electronic components monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

409-412

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.H. Siegel, Terahertz technology: IEEE Trans. Microwave Theory Tech., 2002, 50(3): 910-928.

Google Scholar

[2] A. DOBROIU, C. OTANI and K. KAWASE: Terahertz-wave sources and imaging applications[J]. Meas. Sci. Techno1., 2006, 17(11): R161-R174.

DOI: 10.1088/0957-0233/17/11/r01

Google Scholar

[3] D.H. Auston, K.P. Cheung and J.A. Valdmanis: Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media, Phys. Rev. Lett. 1984, 53(16): 1555.

DOI: 10.1103/physrevlett.53.1555

Google Scholar

[4] C. Fattinger and D. Grischkowsky: Point source terahertz optics, App1. Phys. Lett. 1988. 53(16): 1480.

DOI: 10.1063/1.99971

Google Scholar

[5] R. Huber: How many-particle interactions develop after ultrafast excitation of an electron-hole plasma, Nature, 2001, 414: 286.

DOI: 10.1038/35104522

Google Scholar

[6] Z.P. Jiang and X.C. Zhang: THz Sensing and Imaging Technology( Springer-Verlag, 2001).

Google Scholar

[7] B. Ferguson and X.C. Zhang: Materials for terahertz science and technology. Nature Materials, 2002( 1): 26-33.

Google Scholar

[8] D.M. MITILEMAN, R.H. JACOBSEN and M.C. NUSS: T-ray imaging. IEEE J. Se1. Top. Quantum Electron, 1996, 2(3): 679-692.

Google Scholar

[9] B.B. Hu and M.C. Nuss: Imaging with terahertz waves, Optics Letters, 1995, 20(16): 1716.

Google Scholar

[10] Johnson.J. Dorney and J. Van Rudd: Terahertz reflection imaging using Kirchhof migration Optics Letters, 2001, 26(19): 1513.

DOI: 10.1364/ol.26.001513

Google Scholar

[11] O. Mitrofanov and R. Hazel: Study of single-cycle pulse propagation inside a terahertz near-field probe, App1. Phys. Lett. 2001, 78(2): 252.

DOI: 10.1063/1.1338962

Google Scholar

[12] NASA Marshall Space Flight Center. NASA facts: thermal protection system, NASA Report FS-2004-08-97-MSFC[R]. Huntsville: MSFC, (2004).

DOI: 10.2514/6.2023-2412.vid

Google Scholar

[13] N. KARPOWICZ, H. ZHONG and J. XU: Non-destructive sub-THz CW imaging[J]. Proc. of SPIE, 2005, 5727: 132-142.

Google Scholar

[14] H. ZHONG, J. XU and X. XIE: Nondestructive defect identification with terahertz time-of-flight tomography[J]. IEEE Sens. J., 2005, 5(2): 203-207.

Google Scholar

[15] C-P. YVONNE: Terahertz imaging brings new capabilities to QC applications[J]. Laser Focus World, 2005, 41(7): 109-l14.

Google Scholar

[16] C. DODSON, J. SPICER and M. FITCH: Propagation of terahertz radiation in porous polymer and ceramic materials[c]. Review of Progress in Quantitative NDE, Golden, 2004: 562-569.

Google Scholar