Characterization and Piezoelectric Properties of Bismuth Sodium Titanate Prepared by the Hydrothermal Synthesis Method

Article Preview

Abstract:

Bismuth sodium titanate (Na1/2Bi1/2)TiO3 powders were prepared by the hydrothermal route with starting chemicals containing Ti (OC4H9)4, Bi (NO3)35H2O as Bi and Ti sources at 180°C for 48 h in a PTFE-lined autoclave. XRD result confirms the formation of a pure pervoskite structure for the synthesized powders. SEM observation shows that the powders consist of spherical particles in the range of 0.2~1.0 μm, exhibiting a mean particle size of 0.5 μm. Compared with (Na1/2Bi1/2)TiO3 ceramics made by the conventional solid state reaction method, the specimen made by the hydrothermal synthesis method has superior piezoelectric properties with its piezoelectric constant d33 attaining a relatively high value of 78 pC/N.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-138

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A.I. G. A. Smlenskii, A. I. Afranovskaya etc. J Sov Phys Sol Stat,. Vol. 2. (1961), p.2651.

Google Scholar

[2] T. Takenaka, K. Maruyama and K. Sakata. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. Vol. 30. (1991), p.2236.

Google Scholar

[3] J. Suchanicz. Ferroelectrics. Vol. 200. (1997), p.319.

Google Scholar

[4] J. Suchanicz. Journal of Physics and Chemistry of Solids. Vol. 62. (2001), p.1271.

Google Scholar

[5] C.Y. Kim, T. Sekino and K. Niihara. Journal of the American Ceramic Society. Vol. 86. (2003), p.1464.

Google Scholar

[6] S.B. Cho, M. Oledzka and R. E. Riman. J Cryst Growth. Vol. 226. ( 2001), p.313.

Google Scholar

[7] W.J. Dawson. Ceram Bull. Vol. 67. (1988), p.1673.

Google Scholar

[8] M.M. Lencka, M. Oledzka and R.E. Riman. Chemistry of Materials. Vol. 12. (2000), p.1323.

Google Scholar

[9] X.Z. Jing, Y.X. Li and Q.G. Yin. Materials Science and Engineering B-Solid State Materials for Advanced Technology. Vol. 99. (2003), p.

Google Scholar

[10] Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen and G.R. Han. Ceramics International. Vol. 35. (2009), p.1657.

Google Scholar

[11] T.L. Lu, J.H. Dai, J.T. Tian, W.W. Song, X.Z. Liu, L. Lai, H.J. Chu, X. Huang and X.Y. Liu. Journal of Alloys and Compounds. Vol. 490. (2010), p.232.

Google Scholar

[12] X.P. Jiang, M. Lin, N. Tu, C. Chen, S.L. Zhou and H.Q. Zhan. Journal of Alloys and Compounds. Vol. 509. (2011), p.9346.

Google Scholar

[13] X. Ma, L.H. Xue and Y.W. Yan. Journal of Inorganic Materials. Vol. 26. (2011), p.1251.

Google Scholar

[14] T. Setinc, M. Spreitzer, M. Logar and D. Suvorov. Journal of the American Ceramic Society. Vol. 94. (2011), p.3793.

Google Scholar

[15] A. O'Brien, D.I. Woodward, K. Sardar, R.I. Walton and P.A. Thomas. Applied Physics Letters. Vol. 101. (2012), p.142902.

Google Scholar