Study about Formation Mechanism of Red Spark Discharge of Micro-Arc Oxidation

Article Preview

Abstract:

Formation mechanism of the micro-arc oxidation spark discharge is always a research problem; so far there isnt a theoretical model for analyzing the spark discharge formation which is widely recognized. Based on analyzing the reaction phenomena and the coating feature in the different periods of the red spark discharge, the formation model of the red spark discharge was established. The spark discharge formation mechanism is shown that it causes the spark discharge formation that the electron bombards the gas layer wrapping the coating in the infancy of red spark discharge stage; at the later period the area of strong electric field generates the spark discharge where the coating of excessive polarization turns out easily.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-25

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Kurze, W. Krysmann, J. Schreckenbach, Th. Schwarz, K. Rabending, Cryst. Res. Technol. 22 (1987) 53-58.

DOI: 10.1002/crat.2170220115

Google Scholar

[2] A.A. Voevodin, A.L. Yerokhin, V.V. Lyubimov, M.S. Donley, J.S. Zabinski, Surf. Coat. Technol. 86/87 (1996) 516-521.

DOI: 10.1016/s0257-8972(96)03069-1

Google Scholar

[3] M. Boinet, S. Verdier, S. Maximovitch, et al. Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Electrochemical properties of coatings, Surface & Coatings Technology, 199(2005)141~149.

DOI: 10.1016/j.surfcoat.2004.10.145

Google Scholar

[4] E.V. Parfenov, A.L. Yerokhin, A. Matthews. Frequency response studies for the plasma electrolytic oxidation process, Surface & Coatings Technology, 201(2007)8661~8670.

DOI: 10.1016/j.surfcoat.2007.04.044

Google Scholar

[5] E.V. Parfenov, A.L. Yerokhin, A. Matthews. Impedance spectroscopy characterisation of PEO process and coatings on aluminium, Thin Solid Films, (2007).

DOI: 10.1016/j.tsf.2007.06.169

Google Scholar

[6] F. Me´cuson, T. Czerwiec, T. Belmonte, et al. Diagnostics of an electrolytic microarc process for aluminium alloy oxidation, Surface & Coatings Technology, 200(2005)804~808.

DOI: 10.1016/j.surfcoat.2005.01.076

Google Scholar

[7] L.O. Snizhko, A.L. Yerokhin, A. Pilkington, et al. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochimica Acta, 49(2004)2085~(2095).

DOI: 10.1016/j.electacta.2003.11.027

Google Scholar

[8] L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, et al, A. Pilkington, A. Leyland, A. Matthews. A model for galvanostatic anodising of Al in alkaline solutions, Electrochimica Acta, 50(2005) 5458~5464.

DOI: 10.1016/j.electacta.2005.03.052

Google Scholar

[9] L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, et al. Excessive oxygen evolution during plasma electrolytic oxidation of aluminium, Thin Solid Films, (2007).

DOI: 10.1016/j.tsf.2007.06.158

Google Scholar

[10] James A. Curran, Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings. Cambridge University, Cambridge, 2005. 抱歉,系统响应超时,请稍后再试 · 支持中英、中日在线互译 · 支持网页翻译,在输入框输入网页地址即可 · 提供一键清空、复制功能、支持双语对照查看,使您体验更加流畅.

Google Scholar