[1]
J. A. Bondy, U.S.R. Murty. Graph Theory with Applications. The MaCmillan Press ltd, London and Basingstoke, New York, (1976).
Google Scholar
[2]
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez , D. -U. Hwang. Complex networks: Structure and dynamics. Physics Reports 424 (2006) 175-30.
DOI: 10.1016/j.physrep.2005.10.009
Google Scholar
[3]
G.S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE 65 (1977), 562-570.
DOI: 10.1109/proc.1977.10517
Google Scholar
[4]
G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rules, and assorted applications, In: Theory and Applications of Graphs, Lecture Notes in Math. 642 (1978), 53-65.
DOI: 10.1007/bfb0070364
Google Scholar
[5]
M. Baca, F. Bertault, J. MacDougall, M. Miller, R. Simanjuntak, and Slamin, Vertex-antimagic total labelings of graphs, Discuss. Math. Graph Theory, 23 (2003)67-83.
DOI: 10.7151/dmgt.1186
Google Scholar
[6]
Jogen Bang-Jensen and Gregory Gutin. Digraphs Theory, Algorithms and Applications. Springer-Verlag. Berlin Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, August (2007).
DOI: 10.1002/abio.370140108
Google Scholar
[7]
H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel. Super edge-magic graphs. SUT J. Math., 34 (1998), 105-109.
DOI: 10.55937/sut/991985322
Google Scholar
[8]
Joseph A. Gallian. A Dynamic Survey of Graph Labelling. The Electronic Journal of Combinatorics, 14 (2009), #DS6.
Google Scholar
[9]
R.B. Gnanajothi. Topics in Graph Theory. Ph. D. Thesis, Madurai Kamaraj University, (1991).
Google Scholar
[10]
A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull, 13 (1970), 451-461.
DOI: 10.4153/cmb-1970-084-1
Google Scholar
[11]
A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Symposium, Rome, July 1966, Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355.
Google Scholar
[12]
B.M. Stewart, Magic graphs, Can. J. Math. 18 (1966), 1031-1056.
Google Scholar
[13]
Bing Yao, Hui Cheng, Ming Yao, Meimei Zhao. A Note on Strongly Graceful Trees. Ars Combinatoria 92 (2009), 155-169.
Google Scholar
[14]
Bing Yao, Xiangqian Zhou, Jiajuan Zhang, Xiang'en Chen, Xiaomin Zhang, Jianming Xie, Ming Yao, Mogang Li. Labellings And Invariants Of Models From Complex Networks. Proceeding of 2012 International Conference on Systems and Informatics, Yantai, China 2012: 1616-1620. IEEE catalog number: CFP1273R-CDR.
DOI: 10.1109/icsai.2012.6223350
Google Scholar
[15]
Xiangqian Zhou, Bing Yao, Xiang'en Chen, Haixia Tao. A proof to the odd-gracefulness of all lobsters. Ars Combinatoria 103 (2012), 13-18.
Google Scholar
[16]
Xiangqian Zhou, Bing Yao, Xiangen Chen. On Odd-gracefulness of All Symmetric Trees. to appear in JCMCC.
Google Scholar