Robust Object Tracking Based on Structural Local Sparse Representation and Incremental Subspace Learning

Article Preview

Abstract:

We develop a robust tracking method based on the structural local sparse representation and incremental subspace learning. This representation exploits both partial information and spatial information of the target. The similarity obtained by pooling across the local patches helps locate the target more accurately. In addition, we develop a template update method which combines incremental subspace learning and sparse representation. This strategy adapts the template to the appearance change of the target with less drifting and reduces the influence of the occluded target template as well. Experiments on challenging sequences with evaluation of the state-of-the-art methods show effectiveness of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2388-2392

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Black. Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. In ECCV, 1996. 329–342.

DOI: 10.1007/bfb0015548

Google Scholar

[2] M. J. Black, D. J. Fleet, and Y. Yacoob. A framework for modeling appearance change in image sequences. In ICCV, 1998. 660–667.

Google Scholar

[3] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust online appearance models for visual tracking. PAMI, 2003. 25(10): 1296–1311.

DOI: 10.1109/tpami.2003.1233903

Google Scholar

[4] D. Ross, J. Lim, R. -S. Lin, and M. -H. Yang. Incremental learning for robust visual tracking. IJCV, 2008: 77(1-3): 125–141.

Google Scholar

[5] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse representation. PAMI, 2009: 31(2): 210–227.

DOI: 10.1109/tpami.2008.79

Google Scholar

[6] X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, (2009).

Google Scholar

[7] B. Liu, L. Yang, J. Huang, P. Meer, L. Gong, and C. Kulikowski. Robust and fast collaborative tracking with two stage sparse optimization. In ECCV, (2010).

DOI: 10.1007/978-3-642-15561-1_45

Google Scholar

[8] S. Avidan. Support vector tracking. In CVPR, (2001).

Google Scholar

[9] R. T. Collins, Y Liu, and M. Leordeanu. Online selection of discriminative tracking features. PAMI, 2005: 27(10): 1631–1643.

DOI: 10.1109/tpami.2005.205

Google Scholar

[10] S. Avidan. Ensemble tracking. PAMI, 2007: 29(2): 261–271.

Google Scholar

[11] M. Isard and A. Blake. Condensation – conditional density propagation for visual tracking. IJCV, 1998: 29(1): 5–28.

Google Scholar

[12] B. Babenko, M. -H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In CVPR, (2009).

Google Scholar

[13] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Bootstrapping binary classifiers by structural constraints. In CVPR, (2010).

DOI: 10.1109/cvpr.2010.5540231

Google Scholar

[14] D. Ross, J. Lim, R. -S. Lin, and M. -H. Yang. Incremental learning for robust visual tracking. IJCV, 2008: 7(1): 125–141.

Google Scholar

[15] X. Mei and H. Ling. Robust visual tracking using L1 minimization. In ICCV, (2009).

Google Scholar

[16] S. Wang, H. Lu, F. Yang, and M. -H. Yang. Superpixel tracking. In ICCV, (2011).

Google Scholar

[17] J. Kwon and K. Lee. Visual tracking decomposition. In CVPR, (2010).

Google Scholar