[1]
KSR Murty, B Yegnanarayana. Combining evidence from residual phase and MFCC features for speaker recognition. Signal Processing Letters, IEEE. Jan. 2006: 52-55.
DOI: 10.1109/lsp.2005.860538
Google Scholar
[2]
A Martin, D Charlet, L Mauuary. Robust speech/non-speech detection using LDA applied to MFCC. Acoustics, Speech, and Signal Processing, 2001: 237-240.
DOI: 10.1109/icassp.2001.940811
Google Scholar
[3]
J. Karhunen, J, Joutsensalo. Generalization of principal component analysis, optimization problems and neural networks [J] Neural networks. 1995. 549-562.
DOI: 10.1016/0893-6080(94)00098-7
Google Scholar
[4]
Zhao Jia Li; Luo Si Wei; Han Zhen. The improvements of BP neural network learning algorithm. Signal Processing Proceedings, 2000. WCCC-ICSP 2000: 1647-1649 vol. 3.
DOI: 10.1109/icosp.2000.893417
Google Scholar
[5]
SU Hua. The Application of Support Vector Machine to Low Strain Integrity Testing of Foundation Piles. Soil Engineering and Foundation, 2009. 2.
Google Scholar
[6]
Pingzhou Tang. The Research on BP Neural Network Model Based on Guaranteed Convergence Particle Swarm Optimization. Intelligent Information Technology Application, 2008. 20-22.
DOI: 10.1109/iita.2008.111
Google Scholar
[7]
Bilal Alatas, Erhan Akin, A. Bedri Ozer. Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals. 2009(5)1715-1734.
DOI: 10.1016/j.chaos.2007.09.063
Google Scholar
[8]
Tao Xiang, Xiaofeng Liao, Kwok-wo Wong. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Applied Mathematics and Computation. 2007(7) 1637-1645.
DOI: 10.1016/j.amc.2007.02.103
Google Scholar
[9]
Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, De-Xian Huang. Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals. 2005(5) 1261-1271.
DOI: 10.1016/j.chaos.2004.11.095
Google Scholar
[10]
Yi Da, Ge Xiurun. An improved PSO-based ANN with simulated annealing technique. Neurocomputing. 2005(11) 527-533.
DOI: 10.1016/j.neucom.2004.07.002
Google Scholar
[11]
Chi-Chung Cheung, The Multi-Phase Method in Fast Learning Algorithm, Proceeding of international join conference on neural networks, Atlanta Georgia, USA, 2009(6) 14-19.
Google Scholar