[1]
Xia T, Jiang Q T. Optimal multifilter banks: design, related symmetric extension transform and application to image compression . IEEE Transactions Signal Process, 1999, 47(7): 1878-1890.
DOI: 10.1109/78.771037
Google Scholar
[2]
Tan H H, Shen L X, Than J Y. New biorthogonal multiwavelets for image compression [J]. IEEE Transform Signal Process, 1999, 79(1): 45-65.
DOI: 10.1016/s0165-1684(99)00079-1
Google Scholar
[3]
Cheng Lizhi, Wang Hongxia, Wavelet theory and application. Beijing:Science press: (2004).
Google Scholar
[4]
Telesca L, Lapenna V, Alexis V. Multiresolution wavelet analysis of earthquakes Chao SolutionsFractals, 2004, 22(3): 741-748.
DOI: 10.1016/j.chaos.2004.02.021
Google Scholar
[5]
I. Daubechies Ten Lectures on Wavelets . Beijing: National defence industry press.
Google Scholar
[6]
Chui C K, Lian J A. Compactly supported symmetric and antisymmetric orthonormal wavelet with scale 3 . Applied and Computational Harmonic Analysis, 1995, 2(1): 21-51.
DOI: 10.1006/acha.1995.1003
Google Scholar
[7]
Huang Yongdong, Cheng Zhengxing, Sun Lei. Structure symmetric and antisymmetric M with political filter new method. Journal of Engineering Mathematics, 2005, 22(5): 781-786.
Google Scholar
[8]
Quan Hongyue, Wang Guoqiu. A kind of symmetric orthogonal multiwavelet structure [J]. Shaanxi normal university journal, 2008, 31(4): 682-691.
Google Scholar
[9]
Li Wanshe, Hao Wei, Meng Shaoting. Scale wavelet orthogonal two-way Mallat algorithm . Shaanxi Normal University Journal(Natural Science),2010, 38(3): 1-5.
Google Scholar
[10]
Cui Lihong, Chengzhengxing. Many small wave and balanced multiwavelet theory and design . Journal of Engineering Mathematics, 2001, 18(5):105-116.
Google Scholar
[11]
Cai Jianhong, Tao Feng. Multivariate wavelet filter matrix expansion. Acta Mathematica Scientia, 2009, 29(2):449-455.
Google Scholar
[12]
Yang Shouzhi. Biorthogonal two-direction refinable function and two-direction wavelet . Journal of Applied Mathematics and Computing, 2006, 49(1): 86-97.
DOI: 10.1016/j.amc.2006.06.003
Google Scholar
[13]
Yang Shouzhi, Li Youfa. Two-direction refinable functions and two-direction wavelets with high approximation order and regularity . Sci China:A,2007, 50(12): 1687 -1704.
DOI: 10.1007/s11425-007-0091-7
Google Scholar
[14]
Xie Changzen, Yang Shouzhi. Orthogonal two-direction multiscaling functions . Frontiers of Mathematics in China, 2006, (4): 604-611.
DOI: 10.1007/s11464-006-0031-9
Google Scholar
[15]
Xie C Z. Construction of biorthogonal dilation factor m . Computers And Mathematics With Applications, 2008, 56: 1854-1861.
Google Scholar
[16]
Li wanshe, Luo Lisuo, Li qiao. Orthogonal symmetric compactly supported two-way wavelet structure. Journal of Shantou University:Natural Science,2011, 26, (1): 1-7.
Google Scholar