Sucrose Transporter Gene AtSUC4 Responds to Drought Stress by Regulating the Sucrose Distribution and Metabolism in Arabidopsis thaliana

Article Preview

Abstract:

Sucrose transporters (SUCs or SUTs) are considered as the important carriers and responsible for the loading, unloading and distribution of sucrose, but at present there is no report that SUCs are involved in sucrose distribution and metabolism under drought stress at the whole-plant level. AtSUC4, as the unique member of SUT4-clade in Arabidopsis thaliana, may be important for plant stress tolerance. Here, by analyzing two homozygous mutation lines of AtSUC4 (Atsuc4-1 and Atsuc4-2), we found drought stress induced higher sucrose, lower fructose and glucose contents in shoots, and lower sucrose, higher fructose and glucose contents in roots of these mutants compared with the wild-type (WT), leading to an imbalance of sucrose distribution, fructose and glucose (sucrose metabolites) accumulation changes at the whole-plant level. Thus we believe that AtSUC4 regulates sucrose distribution and metabolism in response to drought stress.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2971-2975

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. X. Zhang and Y.Z. Zheng: Biotechnol. & Biotechnol. EQ. Vol. 22(2008)4, p.938.

Google Scholar

[2] J. Gorham, L.Y. Hughes and R.G. Wynjones: Physiol. Plant. Vol. 53 (1981), p.27.

Google Scholar

[3] S.M. Yu: Plant Physiol. Vol. 121 (1999), p.687.

Google Scholar

[4] A.K. Gupta and N. Kaur: Biosci J. Vol. 30 (2005), p.761.

Google Scholar

[5] C. Kühn and C.P. Grof: Curr. Opin. Plant Biol. Vol. 13 (2010), p.288.

Google Scholar

[6] A.J. Sun, H.L. Xu, W.K. Gong, H.L. Zhai, K. Meng, Y.Q. Wang, X.L. Wei , G.F. Xiao and Z. Zhu: J. Integr. Plant Biol. 50(2008), p.62.

Google Scholar

[7] T. Hirose, Z J. Zhang, A. Miyao, H. Hirochika, R. Ohsugi and T. Terao: J. Exp. Bot. Vol. 61(2010), p.3639.

Google Scholar

[8] N. Aoki, T. Hirose, G.N. Scofield, P.R. Whitfeld and R.T. Furbank: Plant Cell Physiol. Vol. 44(2003), p.223–232.

DOI: 10.1093/pcp/pcg030

Google Scholar

[9] A. Weise, L. Barker, C. Kühn, S. Lalonde, H. Buschmann, W.B. Frommer and J.M. Ward: Plant Cell, Vol. 12 (2000), p.1345.

Google Scholar

[10] A. Endler, S. Meyer, S. Schelbert, T. Schneider, W. Weschke, S.W. Peters, F. Keller, S. Baginsky, E. Martinoia and U.G. Schmidt: Plant Physiol. Vol. 141 (2006), p.196.

DOI: 10.1104/pp.106.079533

Google Scholar

[11] A. Schulz , D. Beyhl ,I. Marten , A. Wormit , E. Neuhaus , G. Poschet ,M. Büttner , S. Schneider , N. Sauer and R. Hedrich: Plant J. Vol. 68(2011), p.129.

DOI: 10.1111/j.1365-313x.2011.04672.x

Google Scholar

[12] O. Ibraheem, G. Dealtry, S. Roux and G. Bradley: Plant Omics J. Vol. 4(2011), p.68.

Google Scholar

[13] C.J. Frost, B. Nyamdari, C.J. Tsai and S.A. Harding: PloS One. Vol. 7(2012)8, e44467. doi: 10. 1371/journal. pone. 0044467.

Google Scholar

[14] S.W. Lu, T.L. Li and J. Jiang: Africa J. Biotechnology. Vol. 9 (2010), p.842.

Google Scholar