Simulating Polydisperse Ellipsoid Particles System

Article Preview

Abstract:

An efficient algorithm for contact detection among many arbitrarily sized ellipsoids is developed. The numberical method is unable to efficiently deal with ellipsoid particles of greatly varying sizes. To overcome this challenge, We present an algebraic method to simulate polydisperse ellipsoid particles system. We offered several times speed-up compared to the numberical method. So that the problem of contact detection in polydisperse ellipsoid particles system essentially is solved. We will describe a generalization of the well-known linked cell list method and an improvement on the nearest neighbor list method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

482-485

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R. Williams, R. O'Connor, Discrete element simulation and the contact problem, Archives of Computational Methods in Engineering 6 (1999) 279–304.

Google Scholar

[2] P. W. Cleary, N. Stokesand, J. Hurley, Efficient collision detection for three dimensional superellipsoidparticles, in: Proc. 8th International Computational Techniques and Applications Conference, World Scienti_c, 1997, pp.1-7.

Google Scholar

[3] C. De Michele, F. Sciortino, R. Schilling, Simulating hard rigid bodies, Journal of Computational Physics 229 (2010) 3276–3294.

DOI: 10.1016/j.jcp.2010.01.002

Google Scholar

[4] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, McGraw–Hill, New York, (1981).

Google Scholar

[5] M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids, Clarendon Press, Oxford, (1989).

Google Scholar

[6] H. Mio, A. Shimosaka, Y. Shirakawa, J. Hidaka, Optimum cell condition for contact detection having a large particle size ratio in the discrete element method, Journal of Chemical Engineering of Japan 39 (2006) 409–416.

DOI: 10.1252/jcej.39.409

Google Scholar

[7] J.F. Peters, R. Kala, R.S. Maier, A hierarchical search algorithm for discrete element method of greatly differing particle sizes, Engineering Computations 26 (2009) 621–634.

DOI: 10.1108/02644400910975423

Google Scholar

[8] V. Ogarko, S. Luding, A fast multilevel algorithm for contact detection of arbitrarily polydisperse object, computer physics Communications 183 (2012) 931–936.

DOI: 10.1016/j.cpc.2011.12.019

Google Scholar

[9] A. Donev, S. Torquato, F.H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. i. Algorithmicdetails, J. Chem. Phys. 202 (2005) 737–764.

DOI: 10.1016/j.jcp.2004.08.014

Google Scholar

[10] A. Donev, S. Torquato, F.H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. ii. Applications toellipses and ellipsoids, J. Chem. Phys. 202 (2005) 765–793.

DOI: 10.1016/s0021-9991(04)00394-8

Google Scholar

[11] Wang, W., Wang, J., Kim, M.S. An algebraic condition for the separation of two ellipsoids. Computer Aided Geometric Design 18 (6), , 2001, 531–539.

DOI: 10.1016/s0167-8396(01)00049-8

Google Scholar

[12] Basu, S., Pollack, R., Roy, M. -F, Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer-Verlag New York, Inc. Secaucus, NJ, USA , (2006).

DOI: 10.1007/3-540-33099-2

Google Scholar