Regularization Method for Complete Singular Integral Equation with Hilbert Kernel on Open Arcs

Article Preview

Abstract:

We considered the regularization method for a kind of complete singular integral equation with Hilbert kernel on open arcs lying in a period strip. And based on this, we obtained the solvable Noether theorem for this kind of complete singular integral equations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

643-646

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lu J K., Boundary Value Problems for Analytic Functions. World Sci Publ, Singapore(2004).

Google Scholar

[2] D. Pylak; R. Smarzewski; M. A. Sheshko, A Singular Integral Equation with a Cauchy Kernel on the Real Half-Line, J. Differential Equations, Volume 41(2005) 1775-1788.

DOI: 10.1007/s10625-006-0014-3

Google Scholar

[3] B. G. Gabdulkhaevt; I. N. Tikhonov, Methods for Solving a Singular Integral Equation with Cauchy Kernel on the Real Line,J. Differential equations, Volume 44(2008) 980-990.

DOI: 10.1134/s0012266108070100

Google Scholar

[4] M. A. Sheshko; S. M. Sheshko, Singular integral equation with Cauchy kernel on the real axis, J. Differential Equations, Volume 46(2010) 568-585.

DOI: 10.1134/s0012266110040129

Google Scholar

[5] M. A. Sheshko; S. M. Sheshko, Singular integral equation with Cauchy kernel on a complicated contour, Differential Equations, Volume 47(2011) 1344-1356.

DOI: 10.1134/s0012266111090114

Google Scholar

[6] M. R. Capobianco; G. Criscuolo, Numerical solution of a singular integral equation with Cauchy kernel in the plane contact problem,J. Quarterly of Applied Mathematics, Volume 69(2011) 79-89.

DOI: 10.1090/s0033-569x-2010-01231-3

Google Scholar